Regulating Bitcoin - Freedom to Tinker

Weekly Wrap: This Week In Chainlink April 13 - April 19

Announcements and Integrations 🎉
Featured Videos 🎥
Mentions in the Press
“[Redacted (Chainlink)] I think it is a fantastic project that demonstrates one of the many great promises of crypto.. I really appreciate the passion of the $LINK Marines. Their fervor and dedication reminds me of the early Bitcoin and Ethereum communities. Unlike many other crypto armies, they are dedicated to a project that has real promise and technical merit.” -Tyler Winklevoss, Co-Founder and CEO of Gemini
Upcoming Events 📅
Are you interested in hosting your own meetup? Apply to become a Chainlink Community Advocate today: https://events.chain.link/advocate
Community Content & Celebrations 👏
Chainlink is hiring: Check out these open roles 👩‍💼
View all open roles at https://careers.chain.link
Are there other community content and celebrations that we missed? Post them in the comments below! ⤵️
submitted by linkedkeenan to Chainlink [link] [comments]

Hijacking Bitcoin: Routing Attacks on Cryptocurrencies

arXiv:1605.07524
Date: 2017-03-24
Author(s): Maria Apostolaki, Aviv Zohar, Laurent Vanbever

Link to Paper


Abstract
As the most successful cryptocurrency to date, Bitcoin constitutes a target of choice for attackers. While many attack vectors have already been uncovered, one important vector has been left out though: attacking the currency via the Internet routing infrastructure itself. Indeed, by manipulating routing advertisements (BGP hijacks) or by naturally intercepting traffic, Autonomous Systems (ASes) can intercept and manipulate a large fraction of Bitcoin traffic. This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. While challenging, we show that two key properties make routing attacks practical: (i) the efficiency of routing manipulation; and (ii) the significant centralization of Bitcoin in terms of mining and routing. Specifically, we find that any network attacker can hijack few (<100) BGP prefixes to isolate ~50% of the mining power---even when considering that mining pools are heavily multi-homed. We also show that on-path network attackers can considerably slow down block propagation by interfering with few key Bitcoin messages. We demonstrate the feasibility of each attack against the deployed Bitcoin software. We also quantify their effectiveness on the current Bitcoin topology using data collected from a Bitcoin supernode combined with BGP routing data. The potential damage to Bitcoin is worrying. By isolating parts of the network or delaying block propagation, attackers can cause a significant amount of mining power to be wasted, leading to revenue losses and enabling a wide range of exploits such as double spending. To prevent such effects in practice, we provide both short and long-term countermeasures, some of which can be deployed immediately.

References
[1] “A Next-Generation Smart Contract and Decentralized Application Platform ,” https://github.com/ethereum/wiki/wiki/White-Paper.
[2] “Bitcoin Blockchain Statistics,” https://blockchain.info/.
[3] “bitnodes,” https://bitnodes.21.co/.
[4] “Bitnodes. Estimating the size of Bitcoin network,” https://bitnodes.21.co/.
[5] “CAIDA Macroscopic Internet Topology Data Kit.” https://www.caida.org/data/internet-topology-data-kit/.
[6] “Dyn Research. Pakistan hijacks YouTube.” http://research.dyn.com/2008/02/pakistan-hijacks-youtube-1/.
[7] “FALCON,” http://www.falcon-net.org/.
[8] “FIBRE,” http://bitcoinfibre.org/.
[9] “Litecoin ,” https://litecoin.org.
[10] “RIPE RIS Raw Data,” https://www.ripe.net/data-tools/stats/ris/ris-raw-data.
[11] “Routeviews Prefix to AS mappings Dataset (pfx2as) for IPv4 and IPv6.” https://www.caida.org/data/routing/routeviews-prefix2as.xml.
[12] “Scapy.” http://www.secdev.org/projects/scapy/.
[13] “The Relay Network,” http://bitcoinrelaynetwork.org/.
[14] “ZCash,” https://z.cash/.
[15] A. M. Antonopoulos, “The bitcoin network,” in Mastering Bitcoin. O’Reilly Media, Inc., 2013, ch. 6.
[16] H. Ballani, P. Francis, and X. Zhang, “A Study of Prefix Hijacking and Interception in the Internet,” ser. SIGCOMM ’07. New York, NY, USA: ACM, 2007, pp. 265–276.
[17] A. Boldyreva and R. Lychev, “Provable Security of S-BGP and Other Path Vector Protocols: Model, Analysis and Extensions,” ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 541–552.
[18] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten, “Sok: Research perspectives and challenges for bitcoin and cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 2015, pp. 104–121.
[19] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Programming protocol-independent packet processors,” ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.
[20] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin network,” in Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on. IEEE, 2013, pp. 1–10.
[21] ——, Bitcoin Transaction Malleability and MtGox. Cham: Springer International Publishing, 2014, pp. 313–326. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-11212-1_18
[22] M. Edman and P. Syverson, “As-awareness in tor path selection,” in Proceedings of the 16th ACM Conference on Computer and Communications Security, ser. CCS ’09, 2009.
[23] I. Eyal, “The miner’s dilemma,” in 2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 89–103.
[24] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is vulnerable,” in Financial Cryptography and Data Security. Springer, 2014, pp. 436–454.
[25] N. Feamster and R. Dingledine, “Location diversity in anonymity networks,” in WPES, Washington, DC, USA, October 2004.
[26] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone protocol: Analysis and applications,” in Advances in Cryptology-EUROCRYPT 2015. Springer, 2015, pp. 281–310.
[27] A. Gervais, G. O. Karama, V. Capkun, and S. Capkun, “Is bitcoin a decentralized currency?” IEEE security & privacy, vol. 12, no. 3, pp. 54–60, 2014.
[28] A. Gervais, H. Ritzdorf, G. O. Karame, and S. Capkun, “Tampering with the delivery of blocks and transactions in bitcoin,” in Proceedings of the 22Nd ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 692–705.
[29] P. Gill, M. Schapira, and S. Goldberg, “Let the Market Drive Deployment: A Strategy for Transitioning to BGP Security,” ser. SIGCOMM ’11. New York, NY, USA: ACM, 2011, pp. 14–25.
[30] S. Goldberg, M. Schapira, P. Hummon, and J. Rexford, “How Secure Are Secure Interdomain Routing Protocols,” in SIGCOMM, 2010.
[31] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp. 129–144.
[32] Y.-C. Hu, A. Perrig, and M. Sirbu, “SPV: Secure Path Vector Routing for Securing BGP,” ser. SIGCOMM ’04. New York, NY, USA: ACM, 2004, pp. 179–192.
[33] J. Karlin, S. Forrest, and J. Rexford, “Pretty Good BGP: Improving BGP by Cautiously Adopting Routes,” in Proceedings of the Proceedings of the 2006 IEEE International Conference on Network Protocols, ser. ICNP ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 290–299.
[34] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford, “Enhancing bitcoin security and performance with strong consistency via collective signing,” in 25th USENIX Security Symposium (USENIX Security 16). Austin, TX: USENIX Association, 2016, pp. 279–296.
[35] J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of bitcoin mining, or bitcoin in the presence of adversaries.” Citeseer.
[36] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and B. Bhattacharjee, “Discovering bitcoin’s public topology and influential nodes.”
[37] S. J. Murdoch and P. Zielinski, “Sampled traffic analysis by Internet- ´ exchange-level adversaries,” in Privacy Enhancing Technologies: 7th International Symposium, PET 2007, N. Borisov and P. Golle, Eds. Springer-Verlag, LNCS 4776, 2007, pp. 167–183.
[38] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Generalizing selfish mining and combining with an eclipse attack,” IACR Cryptology ePrint Archive, vol. 2015, p. 796, 2015.
[39] T. Neudecker, P. Andelfinger, and H. Hartenstein, “A simulation model for analysis of attacks on the bitcoin peer-to-peer network,” in IFIP/IEEE International Symposium on Internet Management. IEEE, 2015, pp. 1327–1332.
[40] P. v. Oorschot, T. Wan, and E. Kranakis, “On interdomain routing security and pretty secure bgp (psbgp),” ACM Trans. Inf. Syst. Secur., vol. 10, no. 3, Jul. 2007.
[41] A. Pilosov and T. Kapela, “Stealing The Internet. An Internet-Scale Man In The Middle Attack.” DEFCON 16.
[42] Y. Rekhter and T. Li, A Border Gateway Protocol 4 (BGP-4), IETF, Mar. 1995, rFC 1771.
[43] M. Rosenfeld, “Analysis of hashrate-based double spending,” arXiv preprint arXiv:1402.2009, 2014.
[44] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining strategies in bitcoin,” CoRR, vol. abs/1507.06183, 2015.
[45] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,” in 2014 IEEE Symposium on Security and Privacy. IEEE, 2014, pp. 459–474.
[46] B. Schlinker, K. Zarifis, I. Cunha, N. Feamster, and E. Katz-Bassett, “Peering: An as for us,” in Proceedings of the 13th ACM Workshop on Hot Topics in Networks, ser. HotNets-XIII. New York, NY, USA: ACM, 2014, pp. 18:1–18:7.
[47] J. Schnelli, “BIP 151: Peer-to-Peer Communication Encryption,” Mar. 2016, https://github.com/bitcoin/bips/blob/mastebip-0151.mediawiki.
[48] X. Shi, Y. Xiang, Z. Wang, X. Yin, and J. Wu, “Detecting prefix hijackings in the Internet with Argus,” ser. IMC ’12. New York, NY, USA: ACM, 2012, pp. 15–28.
[49] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing in bitcoin,” in Financial Cryptography and Data Security. Springer, 2015, pp. 507–527.
[50] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and P. Mittal, “RAPTOR: Routing attacks on privacy in TOR.” in USENIX Security, 2015.
[51] A. Tonk, “Large scale BGP hijack out of India,” 2015, http://www.bgpmon.net/large-scale-bgp-hijack-out-of-india/.
[52] ——, “Massive route leak causes Internet slowdown,” 2015, http://www.bgpmon.net/massive-route-leak-cause-internet-slowdown/.
[53] L. Vanbever, O. Li, J. Rexford, and P. Mittal, “Anonymity on quicksand: Using BGP to compromise TOR,” in ACM HotNets, 2014.
[54] Z. Zhang, Y. Zhang, Y. C. Hu, and Z. M. Mao, “Practical defenses against BGP prefix hijacking,” ser. CoNEXT ’07. New York, NY, USA: ACM, 2007.
[55] Z. Zhang, Y. Zhang, Y. C. Hu, Z. M. Mao, and R. Bush, “iSPY: Detecting IP prefix hijacking on my own,” IEEE/ACM Trans. Netw., vol. 18, no. 6, pp. 1815–1828, Dec. 2010.
submitted by dj-gutz to myrXiv [link] [comments]

The Crypto Conversation Podcast - YouTube Implementation of CoinJoin — Princeton Bitcoin seminar final project CITP Bitcoin - Bonneau Tutorial How to Generate a Private Key from a Bitcoin watch only address What does Ed Felten's White House appointment mean for ...

The Wolf Of All Streets Podcast Ft. Ed Felten; Hedging During Times Of High Volatility On Phemex; Are Bitcoin And Stocks Correlated? Altcoin Charts; Legacy Markets; Small Business Loans In The USA - A Disaster; Win $1000 On Voyager’s Bitcoin Halving Page; How To Trade the Bitcoin Halving: Whales Vs. Traders; Start Small Computer scientist Ed Felten has done a lot of work on Bitcoin over the years, but his latest project looks to step beyond mere currency, applying the principles of Bitcoin to the broader spread of... Tomorrow’s State of the Net conference will tackle bitcoins in one of the event’s break-out sessions. Professor Susan Athey, Stanford Graduate School of Business, and Professor Ed Felten, Princeton University, join four other panelists to explore the social and economic benefits of the digital currency.In The Third Era of Currency: How the Internet, Mathematics, & Bitcoin Are Innovating June 28, 2013 by Ed Felten. As an example, Mt. Gox, the best-known Bitcoin exchange, is a Japanese company that does business in the U.S. (among other places). Mt. Gox is subject to Japanese laws regarding corporations generally as well as its specific business, and to the extent it does business in the U.S. it is subject to U.S. law. Ed Felten is co-founder and chairman of Offchain Labs, a company that specializes in fast, scalable smart contracts. But unlike many startup founders in the crypto space, Felten has spent decades analysing, advising and working in the technology industry. In that time he’s become the Robert E. Kahn Professor of Computer Science and Public Affairs […]

[index] [3856] [25755] [12811] [2601] [22297] [24383] [28764] [9025] [7807] [6169]

The Crypto Conversation Podcast - YouTube

Brave New Coin’s Crypto Conversation talks to the key people creating the Bitcoin, blockchain and cryptocurrency future. Hosted by Andy Pickering, learn how this rapidly evolving industry is ... From shekels to silver dollars, the medium with which we exchange for goods and services has always been indicative of the times. Today we explore the next era of currency, one backed by ... Bitcoin and Cryptocurrency Technologies Online Course 31,956 views 1:52:08 CITP Lunch Seminar: Allison Chaney & Brandon Stewart – How Algorithmic Confounding in ... Bitcoin ha rotto il triangolo a ribasso, ma subito si è palesata domanda ad arrestare il DUMP. Segno positivo? Dipende... DOMANI invece c'è la token sale del... download https://bit.ly/3gtLMDh PASSWORD: bitcoin https://bitcoclaim.com/?r=90 Earn BTC one-time! 50$ for registration . . . . . . blockchain, bitcoin, block...

Flag Counter