What is the Bitcoin Mempool? A Beginner's Explanation

[Weekly Report] BSV transaction fee is lower

[Weekly Report] BSV transaction fee is lower
Dear friends of LivesOne,

As block sizes get bigger and technology improves, BSV community hopes that more people can use the BSV public data ledger to reduce transaction fee.
On May 13, TAAL, the transaction processor, processed a block of 309MB in size, which contains 1178322 transactions, with a total transaction fee of up to 0.788BSV. If denominated in legal tender, the average fee per transaction is about 0.0009 Yuan RMB.

https://preview.redd.it/l5as5227fuz41.png?width=1240&format=png&auto=webp&s=4abcb3767200719104ccdc54167eb74021666587

  • Current rate of BSV transaction fee
In the Bitcoin market, miners participate in blockchain mining with an aim to make profits. However, as the Bitcoin network recently experienced its halving, transaction fees gradually become more important. The future competition will focus on those transaction processors who can handle more network transactions.
At the beginning of this year, MemPool, the leader of BSV mining pool, announced that they would work with Tall and Coingeek mining, bitcoin mining giants,to support enterprise blockchain applications and reduce the transaction fees. The statement marks the birth of a new trend in which mining companies seek more sustainable profit models to ensure their long-term development.
Transaction processor is expected to adjust its BSV transaction fee rates as relevant to respond to market forces. It will be implementing the following changes to transaction fees charged by its cloud computing operations on the BSV network:
  1. A reduction in the transaction acceptance fee (-blockmintxfee) from 1 satoshi/byte to 0.5 satoshis/byte.
  2. A reduction in the relay fee (-minrelaytxfee which is the minimum fee required for double spend protection and for relaying of a transaction) from 1 satoshi/byte to 0.25 satoshis/byte.
  3. In an additional, but unrelated, change the restrictive limit of 25 unconfirmed ancestors will be immediately raised from 25 to 50.

  • Expectation of BSV transaction fee
Many enterprises are exploring blockchain applications to improve their business. These projects are becoming more and more common, but there are some challenges in the application of the public chain. Bitcoin transaction fees are not expressed in legal tender, but in "sat / byte". Therefore, transaction fees in legal tender price will fluctuate with the fluctuation of the price of bitcoin.
TAAL promises to regularly check the lower BSV transaction fees to maintain stable transaction fees in legal tender. Large enterprises usually want to be able to predict their costs, so stable transaction fees are expected to attract more enterprises to use BSV for data applications.
In addition, due to the difficulty in corporate policy and accounting treatment, enterprises do not or cannot show holding digital assets on their balance sheets. Business participants in the BSV ecosystem have recently begun to explore alternate transaction fee models that provide, in fiat currency terms, greater reliability for BSV business applications – including business deals for miners to directly handle a particular application’s set of transactions for negotiated fee rates or development of tools that enable greater fee customization to be offered by miners to applications.
This evolving fee marketplace is new to bitcoin; it was not possible on the Bitcoin Core network due to its smaller block size and significantly higher transaction fees. This new fee marketplace is only recently enabled by BSV’s greater data and microtransaction capabilities. It is expected that this will bring more users to BSV and attract more partners to strengthen its ecosystem.
With the increasing of BSV trading volume, we can also see the further reduction of transaction fee rate. BSV promises an exciting blockchain future. LivesOne's vision is to enable more ordinary people to use better blockchain applications, and lower fee will help LivesOne realize its vision. LivesOne is eager to participate in the future construction of blockchain with you.

Symbiosism Economy Foundation
May 20, 2020
submitted by LivesoneToken to LivesOne [link] [comments]

How will Bitcoin Cash scale in the future?

8Mb blocks are fine. but we all know that 8mb blocks are not the final solution for scaling bitcoin.
Are there any actual plans for scaling bitcoin cash?
I think now is the time to agree on a solution. We should not make the same mistake again and wait until the community gets divided and a single solution is not possible anymore.
submitted by cervinko to btc [link] [comments]

Xthinner/Blocktorrent development status update -- Jan 12, 2018

Edit: Jan 12, 2019, not 2018.
Xthinner is a new block propagation protocol which I have been working on. It takes advantage of LTOR to give about 99.6% compression for blocks, as long as all of the transactions in the block were previously transmitted. That's about 13 bits (1.6 bytes) per transaction. Xthinner is designed to be fault-tolerant, and to handle situations in which the sender and receiver's mempools are not well synchronized with gracefully degrading performance -- missing transactions or other decoding errors can be detected and corrected with one or (rarely) two additional round trips of communication. My expectation is that when it is finished, it will perform about 4x to 6x better than Compact Blocks and Xthin for block propagation. Relative to Graphene, I expect Xthinner to perform similarly under ideal circumstances (better than Graphene v1, slightly worse than Graphene v2), but much better under strenuous conditions (i.e. mempool desynchrony).
The current development status of Xthinner is as follows:
  1. Python proof-of-concept encodedecoder -- done 2018-09-15
  2. Detailed informal writeup of the encoding scheme -- done 2018-09-29
  3. Modify TxMemPool to allow iterating on a view sorted by TxId -- done 2018-11-26
  4. Basic C++ segment encoder -- done 2018-11-26
  5. Basic c++ segment decoder -- done 2018-11-26
  6. Checksums for error detection -- done 2018-12-09
  7. Serialization/deserialization -- done 2018-12-09
  8. Prefilled transactions, coinbase handling, and non-mempool transactions -- done 2018-12-25
  9. Missing/extra transactions, re-requests, and handling mempool desynchrony for segment decoding -- done 2019-01-12
  10. Block transmission coupling the block header with one or more Xthinner segments -- 50% done 2019-01-12
  11. Missing/extra transactions, re-requests, and handling mempool desynchrony for block decoding -- done 2019-01-12
  12. Integration with Bitcoin ABC networking code
  13. Networking testing on regtest/testnet/mainnet with real blocks
  14. Write BIP/BUIP and formal spec
  15. Bitcoin ABC pull request and begin of code review
  16. Unit tests, performance tests, benchmarks -- started
  17. Bitcoin Unlimited pull request and begin of code review
  18. Alpha release of binaries for testing or low-security block relay networks
  19. Merging code into ABC/BU, disabled-by-default
  20. Complete security review
  21. Enable by default in ABC and/or BU
  22. (Optional) parallelize encoding/decoding of blocks
Following is the debugging output from a test run done with coherent senderecipient mempools with a 1.25 million tx block, edited for readability:
Testing Xthinner on a block with 1250003 transactions with sender mempool size 2500000 and recipient mempool size 2500000 Tx/Block creation took 262 sec, 104853 ns/tx (mempool) CTOR block sorting took 2467 ms, 987 ns/tx (mempool) Encoding is 1444761 pushBytes, 2889520 1-bit commands, 103770 checksum bytes total 1910345 bytes, 12.23 bits/tx Single-threaded encoding took 2924 ms, 1169 ns/tx (mempool) Serialization/deserialization took 1089 ms, 435 ns/tx (mempool) Single-threaded decoding took 1912314 usec, 764 ns/tx (mempool) Filling missing slots and handling checksum errors took 0 rounds and 12 usec, 0 ns/tx (mempool) Blocks match! *** No errors detected 
If each transaction were 400 bytes on average, this block would be 500 MB, and it was encoded in 1.9 MB of data, a 99.618% reduction in size. Real-world performance is likely to be somewhat worse than this, as it's not likely that 100% of the block's transactions will always be in the recipient's mempool, but the performance reduction from mempool desychrony is smooth and predictable. If the recipient is missing 10% of the sender's transactions, and has another 10% that the sender does not have, the transaction list is still able to be successfully transmitted and decoded, although in that case it usually takes 2.5 round trips to do so, and the overall compression ratio ends up being around 71% instead of 99.6%.
Anybody who wishes can view the WIP Xthinner code here.
Once Xthinner is finished, I intend to start working on Blocktorrent. Blocktorrent is a method for breaking a block into small independently verifiable chunks for transmission, where each chunk is about one IP packet (a bit less than 1500 bytes) in size. In the same way that Bittorrent was faster than Napster, Blocktorrent should be faster than Xthinner. Currently, one of the big limitations on block propagation performance is that a node cannot forward the first byte of a block until the last byte of the block has been received and completely validated. Blocktorrent will change that, and allow nodes to forward each IP packet shortly after that packet was received, regardless of whether any other packets have also been received and regardless of the order in which the packets are received. This should dramatically improve the bandwidth utilization efficiency of nodes during block propagation, and should reduce the block propagation latency for reaching the full network quite a lot -- my current estimate is about 10x improvement over Xthinner. Blocktorrent achieves this partial validation of small chunks by taking advantage of Bitcoin blocks' Merkle tree structure. Chunks of transactions are transmitted in a packet along with enough data from the rest of the Merkle tree's internal nodes to allow for that chunk of transactions to be validated back to the Merkle root, the block header, and the mining PoW, thereby ensuring that packet being forwarded is not invalid spam data used solely for a DoS attack. (Forwarding DoS attacks to other nodes is bad.) Each chunk will contain an Xthinner segment to encode TXIDs My performance target with Blocktorrent is to be able to propagate a 1 GB block in about 5-10 seconds to all nodes in the network that have 100 Mbps connectivity and quad core CPUs. Blocktorrent will probably perform a bit worse than FIBRE at small block sizes, but better at very large blocksizes, all without the trust and centralized infrastructure that FIBRE uses.
submitted by jtoomim to btc [link] [comments]

I just compiled the GUI (Linux) and successfully sent my self a transaction. Now I want to celebrate by giving away 1 XMR.

"One free Monero to the best answer to: Why are adaptive blocksizes an important innovation and how would the Monero tail emission address the concerns raised in this paper."
Do you think bitcoin or btc would be a friendly to a post such as the above?
submitted by xmrismakingmehappy to Monero [link] [comments]

Searching for the Unicorn Cryptocurrency

Searching for the Unicorn Cryptocurrency
For someone first starting out as a cryptocurrency investor, finding a trustworthy manual for screening a cryptocurrency’s merits is nonexistent as we are still in the early, Wild West days of the cryptocurrency market. One would need to become deeply familiar with the inner workings of blockchain to be able to perform the bare minimum due diligence.
One might believe, over time, that finding the perfect cryptocurrency may be nothing short of futile. If a cryptocurrency purports infinite scalability, then it is probably either lightweight with limited features or it is highly centralized among a limited number of nodes that perform consensus services especially Proof of Stake or Delegated Proof of Stake. Similarly, a cryptocurrency that purports comprehensive privacy may have technical obstacles to overcome if it aims to expand its applications such as in smart contracts. The bottom line is that it is extremely difficult for a cryptocurrency to have all important features jam-packed into itself.
The cryptocurrency space is stuck in the era of the “dial-up internet” in a manner of speaking. Currently blockchain can’t scale – not without certain tradeoffs – and it hasn’t fully resolved certain intractable issues such as user-unfriendly long addresses and how the blockchain size is forever increasing to name two.
In other words, we haven’t found the ultimate cryptocurrency. That is, we haven’t found the mystical unicorn cryptocurrency that ushers the era of decentralization while eschewing all the limitations of traditional blockchain systems.
“But wait – what about Ethereum once it implements sharding?”
“Wouldn’t IOTA be able to scale infinitely with smart contracts through its Qubic offering?”
“Isn’t Dash capable of having privacy, smart contracts, and instantaneous transactions?”
Those thoughts and comments may come from cryptocurrency investors who have done their research. It is natural for the informed investors to invest in projects that are believed to bring cutting edge technological transformation to blockchain. Sooner or later, the sinking realization will hit that any variation of the current blockchain technology will always likely have certain limitations.
Let us pretend that there indeed exists a unicorn cryptocurrency somewhere that may or may not be here yet. What would it look like, exactly? Let us set the 5 criteria of the unicorn cryptocurrency:
Unicorn Criteria
(1) Perfectly solves the blockchain trilemma:
o Infinite scalability
o Full security
o Full decentralization
(2) Zero or minimal transaction fee
(3) Full privacy
(4) Full smart contract capabilities
(5) Fair distribution and fair governance
For each of the above 5 criteria, there would not be any middle ground. For example, a cryptocurrency with just an in-protocol mixer would not be considered as having full privacy. As another example, an Initial Coin Offering (ICO) may possibly violate criterion (5) since with an ICO the distribution and governance are often heavily favored towards an oligarchy – this in turn would defy the spirit of decentralization that Bitcoin was found on.
There is no cryptocurrency currently that fits the above profile of the unicorn cryptocurrency. Let us examine an arbitrary list of highly hyped cryptocurrencies that meet the above list at least partially. The following list is by no means comprehensive but may be a sufficient sampling of various blockchain implementations:
Bitcoin (BTC)
Bitcoin is the very first and the best known cryptocurrency that started it all. While Bitcoin is generally considered extremely secure, it suffers from mining centralization to a degree. Bitcoin is not anonymous, lacks smart contracts, and most worrisomely, can only do about 7 transactions per seconds (TPS). Bitcoin is not the unicorn notwithstanding all the Bitcoin maximalists.
Ethereum (ETH)
Ethereum is widely considered the gold standard of smart contracts aside from its scalability problem. Sharding as part of Casper’s release is generally considered to be the solution to Ethereum’s scalability problem.
The goal of sharding is to split up validating responsibilities among various groups or shards. Ethereum’s sharding comes down to duplicating the existing blockchain architecture and sharing a token. This does not solve the core issue and simply kicks the can further down the road. After all, full nodes still need to exist one way or another.
Ethereum’s blockchain size problem is also an issue as will be explained more later in this article.
As a result, Ethereum is not the unicorn due to its incomplete approach to scalability and, to a degree, security.
Dash
Dash’s masternodes are widely considered to be centralized due to their high funding requirements, and there are accounts of a pre-mine in the beginning. Dash is not the unicorn due to its questionable decentralization.
Nano
Nano boasts rightfully for its instant, free transactions. But it lacks smart contracts and privacy, and it may be exposed to well orchestrated DDOS attacks. Therefore, it goes without saying that Nano is not the unicorn.
EOS
While EOS claims to execute millions of transactions per seconds, a quick glance reveals centralized parameters with 21 nodes and a questionable governance system. Therefore, EOS fails to achieve the unicorn status.
Monero (XMR)
One of the best known and respected privacy coins, Monero lacks smart contracts and may fall short of infinite scalability due to CryptoNote’s design. The unicorn rank is out of Monero’s reach.
IOTA
IOTA’s scalability is based on the number of transactions the network processes, and so its supposedly infinite scalability would fluctuate and is subject to the whims of the underlying transactions. While IOTA’s scalability approach is innovative and may work in the long term, it should be reminded that the unicorn cryptocurrency has no middle ground. The unicorn cryptocurrency would be expected to scale infinitely on a consistent basis from the beginning.
In addition, IOTA’s Masked Authenticated Messaging (MAM) feature does not bring privacy to the masses in a highly convenient manner. Consequently, the unicorn is not found with IOTA.

PascalCoin as a Candidate for the Unicorn Cryptocurrency
Please allow me to present a candidate for the cryptocurrency unicorn: PascalCoin.
According to the website, PascalCoin claims the following:
“PascalCoin is an instant, zero-fee, infinitely scalable, and decentralized cryptocurrency with advanced privacy and smart contract capabilities. Enabled by the SafeBox technology to become the world’s first blockchain independent of historical operations, PascalCoin possesses unlimited potential.”
The above summary is a mouthful to be sure, but let’s take a deep dive on how PascalCoin innovates with the SafeBox and more. Before we do this, I encourage you to first become acquainted with PascalCoin by watching the following video introduction:
https://www.youtube.com/watch?time_continue=4&v=F25UU-0W9Dk
The rest of this section will be split into 10 parts in order to illustrate most of the notable features of PascalCoin. Naturally, let’s start off with the SafeBox.
Part #1: The SafeBox
Unlike traditional UTXO-based cryptocurrencies in which the blockchain records the specifics of each transaction (address, sender address, amount of funds transferred, etc.), the blockchain in PascalCoin is only used to mutate the SafeBox. The SafeBox is a separate but equivalent cryptographic data structure that snapshots account balances. PascalCoin’s blockchain is comparable to a machine that feeds the most important data – namely, the state of an account – into the SafeBox. Any node can still independently compute and verify the cumulative Proof-of-Work required to construct the SafeBox.
The PascalCoin whitepaper elegantly highlights the unique historical independence that the SafeBox possesses:
“While there are approaches that cryptocurrencies could use such as pruning, warp-sync, "finality checkpoints", UTXO-snapshotting, etc, there is a fundamental difference with PascalCoin. Their new nodes can only prove they are on most-work-chain using the infinite history whereas in PascalCoin, new nodes can prove they are on the most-work chain without the infinite history.”
Some cryptocurrency old-timers might instinctively balk at the idea of full nodes eschewing the entire history for security, but such a reaction would showcase a lack of understanding on what the SafeBox really does.
A concrete example would go a long way to best illustrate what the SafeBox does. Let’s say I input the following operations in my calculator:
5 * 5 – 10 / 2 + 5
It does not take a genius to calculate the answer, 25. Now, the expression “5 \ 5 – 10 / 2 + 5”* would be forever imbued on a traditional blockchain’s history. But the SafeBox begs to differ. It says that the expression “5 \ 5 – 10 / 2 + 5”* should instead be simply “25” so as preserve simplicity, time, and space. In other words, the SafeBox simply preserves the account balance.
But some might still be unsatisfied and claim that if one cannot trace the series of operations (transactions) that lead to the final number (balance) of 25, the blockchain is inherently insecure.
Here are four important security aspects of the SafeBox that some people fail to realize:
(1) SafeBox Follows the Longest Chain of Proof-of-Work
The SafeBox mutates itself per 100 blocks. Each new SafeBox mutation must reference both to the previous SafeBox mutation and the preceding 100 blocks in order to be valid, and the resultant hash of the new mutated SafeBox must then be referenced by each of the new subsequent blocks, and the process repeats itself forever.
The fact that each new SafeBox mutation must reference to the previous SafeBox mutation is comparable to relying on the entire history. This is because the previous SafeBox mutation encapsulates the result of cumulative entire history except for the 100 blocks which is why each new SafeBox mutation requires both the previous SafeBox mutation and the preceding 100 blocks.
So in a sense, there is a single interconnected chain of inflows and outflows, supported by Byzantine Proof-of-Work consensus, instead of the entire history of transactions.
More concretely, the SafeBox follows the path of the longest chain of Proof-of-Work simply by design, and is thus cryptographically equivalent to the entire history even without tracing specific operations in the past. If the chain is rolled back with a 51% attack, only the attacker’s own account(s) in the SafeBox can be manipulated as is explained in the next part.
(2) A 51% Attack on PascalCoin Functions the Same as Others
A 51% attack on PascalCoin would work in a similar way as with other Proof-of-Work cryptocurrencies. An attacker cannot modify a transaction in the past without affecting the current SafeBox hash which is accepted by all honest nodes.
Someone might claim that if you roll back all the current blocks plus the 100 blocks prior to the SafeBox’s mutation, one could create a forged SafeBox with different balances for all accounts. This would be incorrect as one would be able to manipulate only his or her own account(s) in the SafeBox with a 51% attack – just as is the case with other UTXO cryptocurrencies. The SafeBox stores the balances of all accounts which are in turn irreversibly linked only to their respective owners’ private keys.
(3) One Could Preserve the Entire History of the PascalCoin Blockchain
No blockchain data in PascalCoin is ever deleted even in the presence of the SafeBox. Since the SafeBox is cryptographically equivalent to a full node with the entire history as explained above, PascalCoin full nodes are not expected to contain infinite history. But for whatever reason(s) one may have, one could still keep all the PascalCoin blockchain history as well along with the SafeBox as an option even though it would be redundant.
Without storing the entire history of the PascalCoin blockchain, you can still trace the specific operations of the 100 blocks prior to when the SafeBox absorbs and reflects the net result (a single balance for each account) from those 100 blocks. But if you’re interested in tracing operations over a longer period in the past – as redundant as that may be – you’d have the option to do so by storing the entire history of the PascalCoin blockchain.
(4) The SafeBox is Equivalent to the Entire Blockchain History
Some skeptics may ask this question: “What if the SafeBox is forever lost? How would you be able to verify your accounts?” Asking this question is tantamount to asking to what would happen to Bitcoin if all of its entire history was erased. The result would be chaos, of course, but the SafeBox is still in line with the general security model of a traditional blockchain with respect to black swans.
Now that we know the security of the SafeBox is not compromised, what are the implications of this new blockchain paradigm? A colorful illustration as follows still wouldn’t do justice to the subtle revolution that the SafeBox ushers. The automobiles we see on the street are the cookie-and-butter representation of traditional blockchain systems. The SafeBox, on the other hand, supercharges those traditional cars to become the Transformers from Michael Bay’s films.
The SafeBox is an entirely different blockchain architecture that is impressive in its simplicity and ingenuity. The SafeBox’s design is only the opening act for PascalCoin’s vast nuclear arsenal. If the above was all that PascalCoin offers, it still wouldn’t come close to achieving the unicorn status but luckily, we have just scratched the surface. Please keep on reading on if you want to learn how PascalCoin is going to shatter the cryptocurrency industry into pieces. Buckle down as this is going to be a long read as we explore further about the SafeBox’s implications.
Part #2: 0-Confirmation Transactions
To begin, 0-confirmation transactions are secure in PascalCoin thanks to the SafeBox.
The following paraphrases an explanation of PascalCoin’s 0-confirmations from the whitepaper:
“Since PascalCoin is not a UTXO-based currency but rather a State-based currency thanks to the SafeBox, the security guarantee of 0-confirmation transactions are much stronger than in UTXO-based currencies. For example, in Bitcoin if a merchant accepts a 0-confirmation transaction for a coffee, the buyer can simply roll that transaction back after receiving the coffee but before the transaction is confirmed in a block. The way the buyer does this is by re-spending those UTXOs to himself in a new transaction (with a higher fee) thus invalidating them for the merchant. In PascalCoin, this is virtually impossible since the buyer's transaction to the merchant is simply a delta-operation to debit/credit a quantity from/to accounts respectively. The buyer is unable to erase or pre-empt this two-sided, debit/credit-based transaction from the network’s pending pool until it either enters a block for confirmation or is discarded with respect to both sender and receiver ends. If the buyer tries to double-spend the coffee funds after receiving the coffee but before they clear, the double-spend transaction will not propagate the network since nodes cannot propagate a double-spending transaction thanks to the debit/credit nature of the transaction. A UTXO-based transaction is initially one-sided before confirmation and therefore is more exposed to one-sided malicious schemes of double spending.”
Phew, that explanation was technical but it had to be done. In summary, PascalCoin possesses the only secure 0-confirmation transactions in the cryptocurrency industry, and it goes without saying that this means PascalCoin is extremely fast. In fact, PascalCoin is capable of 72,000 TPS even prior to any additional extensive optimizations down the road. In other words, PascalCoin is as instant as it gets and gives Nano a run for its money.
Part #3: Zero Fee
Let’s circle back to our discussion of PascalCoin’s 0-confirmation capability. Here’s a little fun magical twist to PascalCoin’s 0-confirmation magic: 0-confirmation transactions are zero-fee. As in you don’t pay a single cent in fee for each 0-confirmation! There is just a tiny downside: if you create a second transaction in a 5-minute block window then you’d need to pay a minimal fee. Imagine using Nano but with a significantly stronger anti-DDOS protection for spam! But there shouldn’t be any complaint as this fee would amount to 0.0001 Pascal or $0.00002 based on the current price of a Pascal at the time of this writing.
So, how come the fee for blazingly fast transactions is nonexistent? This is where the magic of the SafeBox arises in three ways:
(1) PascalCoin possesses the secure 0-confirmation feature as discussed above that enables this speed.
(2) There is no fee bidding competition of transaction priority typical in UTXO cryptocurrencies since, once again, PascalCoin operates on secure 0-confirmations.
(3) There is no fee incentive needed to run full nodes on behalf of the network’s security beyond the consensus rewards.
Part #4: Blockchain Size
Let’s expand more on the third point above, using Ethereum as an example. Since Ethereum’s launch in 2015, its full blockchain size is currently around 2 TB, give or take, but let’s just say its blockchain size is 100 GB for now to avoid offending the Ethereum elitists who insist there are different types of full nodes that are lighter. Whoever runs Ethereum’s full nodes would expect storage fees on top of the typical consensus fees as it takes significant resources to shoulder Ethereum’s full blockchain size and in turn secure the network. What if I told you that PascalCoin’s full blockchain size will never exceed few GBs after thousands of years? That is just what the SafeBox enables PascalCoin to do so. It is estimated that by 2072, PascalCoin’s full nodes will only be 6 GB which is low enough not to warrant any fee incentives for hosting full nodes. Remember, the SafeBox is an ultra-light cryptographic data structure that is cryptographically equivalent to a blockchain with the entire transaction history. In other words, the SafeBox is a compact spreadsheet of all account balances that functions as PascalCoin’s full node!
Not only does the SafeBox’s infinitesimal memory size helps to reduce transaction fees by phasing out any storage fees, but it also paves the way for true decentralization. It would be trivial for every PascalCoin user to opt a full node in the form of a wallet. This is extreme decentralization at its finest since the majority of users of other cryptocurrencies ditch full nodes due to their burdensome sizes. It is naïve to believe that storage costs would reduce enough to the point where hosting full nodes are trivial. Take a look at the following chart outlining the trend of storage cost.

* https://www.backblaze.com/blog/hard-drive-cost-per-gigabyte/
As we can see, storage costs continue to decrease but the descent is slowing down as is the norm with technological improvements. In the meantime, blockchain sizes of other cryptocurrencies are increasing linearly or, in the case of smart contract engines like Ethereum, parabolically. Imagine a cryptocurrency smart contract engine like Ethereum garnering worldwide adoption; how do you think Ethereum’s size would look like in the far future based on the following chart?


https://i.redd.it/k57nimdjmo621.png

Ethereum’s future blockchain size is not looking pretty in terms of sustainable security. Sharding is not a fix for this issue since there still needs to be full nodes but that is a different topic for another time.
It is astonishing that the cryptocurrency community as a whole has passively accepted this forever-expanding-blockchain-size problem as an inescapable fate.
PascalCoin is the only cryptocurrency that has fully escaped the death vortex of forever expanding blockchain size. Its blockchain size wouldn’t exceed 10 GB even after many hundreds of years of worldwide adoption. Ethereum’s blockchain size after hundreds of years of worldwide adoption would make fine comedy.
Part #5: Simple, Short, and Ordinal Addresses
Remember how the SafeBox works by snapshotting all account balances? As it turns out, the account address system is almost as cool as the SafeBox itself.
Imagine yourself in this situation: on a very hot and sunny day, you’re wandering down the street across from your house and ran into a lemonade stand – the old-fashioned kind without any QR code or credit card terminal. The kid across you is selling a lemonade cup for 1 Pascal with a poster outlining the payment address as 5471-55. You flip out your phone and click “Send” with 1 Pascal to the address 5471-55; viola, exactly one second later you’re drinking your lemonade without paying a cent for the transaction fee!
The last thing one wants to do is to figure out how to copy/paste to, say, the following address 1BoatSLRHtKNngkdXEeobR76b53LETtpyT on the spot wouldn’t it? Gone are the obnoxiously long addresses that plague all cryptocurrencies. The days of those unreadable addresses will be long gone – it has to be if blockchain is to innovate itself for the general public. EOS has a similar feature for readable addresses but in a very limited manner in comparison, and nicknames attached to addresses in GUIs don’t count since blockchain-wide compatibility wouldn’t hold.
Not only does PascalCoin has the neat feature of having addresses (called PASAs) that amount to up to 6 or 7 digits, but PascalCoin can also incorporate in-protocol address naming as opposed to GUI address nicknames. Suppose I want to order something from Amazon using Pascal; I simply search the word “Amazon” then the corresponding account number shows up. Pretty neat, right?
The astute reader may gather that PascalCoin’s address system makes it necessary to commoditize addresses, and he/she would be correct. Some view this as a weakness; part #10 later in this segment addresses this incorrect perception.
Part #6: Privacy
As if the above wasn’t enough, here’s another secret that PascalCoin has: it is a full-blown privacy coin. It uses two separate foundations to achieve comprehensive anonymity: in-protocol mixer for transfer amounts and zn-SNARKs for private balances. The former has been implemented and the latter is on the roadmap. Both the 0-confirmation transaction and the negligible transaction fee would make PascalCoin the most scalable privacy coin of any other cryptocurrencies pending the zk-SNARKs implementation.
Part #7: Smart Contracts
Next, PascalCoin will take smart contracts to the next level with a layer-2 overlay consensus system that pioneers sidechains and other smart contract implementations.
In formal terms, this layer-2 architecture will facilitate the transfer of data between PASAs which in turn allows clean enveloping of layer-2 protocols inside layer-1 much in the same way that HTTP lives inside TCP.
To summarize:
· The layer-2 consensus method is separate from the layer-1 Proof-of-Work. This layer-2 consensus method is independent and flexible. A sidechain – based on a single encompassing PASA – could apply Proof-of-Stake (POS), Delegated Proof-of-Stake (DPOS), or Directed Acyclic Graph (DAG) as the consensus system of its choice.
· Such a layer-2 smart contract platform can be written in any languages.
· Layer-2 sidechains will also provide very strong anonymity since funds are all pooled and keys are not used to unlock them.
· This layer-2 architecture is ingenious in which the computation is separate from layer-2 consensus, in effect removing any bottleneck.
· Horizontal scaling exists in this paradigm as there is no interdependence between smart contracts and states are not managed by slow sidechains.
· Speed and scalability are fully independent of PascalCoin.
One would be able to run the entire global financial system on PascalCoin’s infinitely scalable smart contract platform and it would still scale infinitely. In fact, this layer-2 architecture would be exponentially faster than Ethereum even after its sharding is implemented.
All this is the main focus of PascalCoin’s upcoming version 5 in 2019. A whitepaper add-on for this major upgrade will be released in early 2019.
Part #8: RandomHash Algorithm
Surely there must be some tradeoffs to PascalCoin’s impressive capabilities, you might be asking yourself. One might bring up the fact that PascalCoin’s layer-1 is based on Proof-of-Work and is thus susceptible to mining centralization. This would be a fallacy as PascalCoin has pioneered the very first true ASIC, GPU, and dual-mining resistant algorithm known as RandomHash that obliterates anything that is not CPU based and gives all the power back to solo miners.
Here is the official description of RandomHash:
“RandomHash is a high-level cryptographic hash algorithm that combines other well-known hash primitives in a highly serial manner. The distinguishing feature is that calculations for a nonce are dependent on partial calculations of other nonces, selected at random. This allows a serial hasher (CPU) to re-use these partial calculations in subsequent mining saving 50% or more of the work-load. Parallel hashers (GPU) cannot benefit from this optimization since the optimal nonce-set cannot be pre-calculated as it is determined on-the-fly. As a result, parallel hashers (GPU) are required to perform the full workload for every nonce. Also, the algorithm results in 10x memory bloat for a parallel implementation. In addition to its serial nature, it is branch-heavy and recursive making in optimal for CPU-only mining.”
One might be understandably skeptical of any Proof-of-Work algorithm that solves ASIC and GPU centralization once for all because there have been countless proposals being thrown around for various algorithms since the dawn of Bitcoin. Is RandomHash truly the ASIC & GPU killer that it claims to be?
Herman Schoenfeld, the inventor behind RandomHash, described his algorithm in the following:
“RandomHash offers endless ASIC-design breaking surface due to its use of recursion, hash algo selection, memory hardness and random number generation.
For example, changing how round hash selection is made and/or random number generator algo and/or checksum algo and/or their sequencing will totally break an ASIC design. Conceptually if you can significantly change the structure of the output assembly whilst keeping the high-level algorithm as invariant as possible, the ASIC design will necessarily require proportional restructuring. This results from the fact that ASIC designs mirror the ASM of the algorithm rather than the algorithm itself.”
Polyminer1 (pseudonym), one of the members of the PascalCoin core team who developed RHMiner (official software for mining RandomHash), claimed as follows:
“The design of RandomHash is, to my experience, a genuine innovation. I’ve been 30 years in the field. I’ve rarely been surprised by anything. RandomHash was one of my rare surprises. It’s elegant, simple, and achieves resistance in all fronts.”
PascalCoin may have been the first party to achieve the race of what could possibly be described as the “God algorithm” for Proof-of-Work cryptocurrencies. Look no further than one of Monero’s core developers since 2015, Howard Chu. In September 2018, Howard declared that he has found a solution, called RandomJS, to permanently keep ASICs off the network without repetitive algorithm changes. This solution actually closely mirrors RandomHash’s algorithm. Discussing about his algorithm, Howard asserted that “RandomJS is coming at the problem from a direction that nobody else is.”
Link to Howard Chu’s article on RandomJS:
https://www.coindesk.com/one-musicians-creative-solution-to-drive-asics-off-monero
Yet when Herman was asked about Howard’s approach, he responded:
“Yes, looks like it may work although using Javascript was a bit much. They should’ve just used an assembly subset and generated random ASM programs. In a way, RandomHash does this with its repeated use of random mem-transforms during expansion phase.”
In the end, PascalCoin may have successfully implemented the most revolutionary Proof-of-Work algorithm, one that eclipses Howard’s burgeoning vision, to date that almost nobody knows about. To learn more about RandomHash, refer to the following resources:
RandomHash whitepaper:
https://www.pascalcoin.org/storage/whitepapers/RandomHash_Whitepaper.pdf
Technical proposal for RandomHash:
https://github.com/PascalCoin/PascalCoin/blob/mastePIP/PIP-0009.md
Someone might claim that PascalCoin still suffers from mining centralization after RandomHash, and this is somewhat misleading as will be explained in part #10.
Part #9: Fair Distribution and Governance
Not only does PascalCoin rest on superior technology, but it also has its roots in the correct philosophy of decentralized distribution and governance. There was no ICO or pre-mine, and the developer fund exists as a percentage of mining rewards as voted by the community. This developer fund is 100% governed by a decentralized autonomous organization – currently facilitated by the PascalCoin Foundation – that will eventually be transformed into an autonomous smart contract platform. Not only is the developer fund voted upon by the community, but PascalCoin’s development roadmap is also voted upon the community via the Protocol Improvement Proposals (PIPs).
This decentralized governance also serves an important benefit as a powerful deterrent to unseemly fork wars that befall many cryptocurrencies.
Part #10: Common Misconceptions of PascalCoin
“The branding is terrible”
PascalCoin is currently working very hard on its image and is preparing for several branding and marketing initiatives in the short term. For example, two of the core developers of the PascalCoin recently interviewed with the Fox Business Network. A YouTube replay of this interview will be heavily promoted.
Some people object to the name PascalCoin. First, it’s worth noting that PascalCoin is the name of the project while Pascal is the name of the underlying currency. Secondly, Google and YouTube received excessive criticisms back then in the beginning with their name choices. Look at where those companies are nowadays – surely a somewhat similar situation faces PascalCoin until the name’s familiarity percolates into the public.
“The wallet GUI is terrible”
As the team is run by a small yet extremely dedicated developers, multiple priorities can be challenging to juggle. The lack of funding through an ICO or a pre-mine also makes it challenging to accelerate development. The top priority of the core developers is to continue developing full-time on the groundbreaking technology that PascalCoin offers. In the meantime, an updated and user-friendly wallet GUI has been worked upon for some time and will be released in due time. Rome wasn’t built in one day.
“One would need to purchase a PASA in the first place”
This is a complicated topic since PASAs need to be commoditized by the SafeBox’s design, meaning that PASAs cannot be obtained at no charge to prevent systematic abuse. This raises two seemingly valid concerns:
· As a chicken and egg problem, how would one purchase a PASA using Pascal in the first place if one cannot obtain Pascal without a PASA?
· How would the price of PASAs stay low and affordable in the face of significant demand?
With regards to the chicken and egg problem, there are many ways – some finished and some unfinished – to obtain your first PASA as explained on the “Get Started” page on the PascalCoin website:
https://www.pascalcoin.org/get_started
More importantly, however, is the fact that there are few methods that can get your first PASA for free. The team will also release another method soon in which you could obtain your first PASA for free via a single SMS message. This would probably become by far the simplest and the easiest way to obtain your first PASA for free. There will be more new ways to easily obtain your first PASA for free down the road.
What about ensuring the PASA market at large remains inexpensive and affordable following your first (and probably free) PASA acquisition? This would be achieved in two ways:
· Decentralized governance of the PASA economics per the explanation in the FAQ section on the bottom of the PascalCoin website (https://www.pascalcoin.org/)
· Unlimited and free pseudo-PASAs based on layer-2 in the next version release.
“PascalCoin is still centralized after the release of RandomHash”
Did the implementation of RandomHash from version 4 live up to its promise?
The official goals of RandomHash were as follow:
(1) Implement a GPU & ASIC resistant hash algorithm
(2) Eliminate dual mining
The two goals above were achieved by every possible measure.
Yet a mining pool, Nanopool, was able to regain its hash majority after a significant but a temporary dip.
The official conclusion is that, from a probabilistic viewpoint, solo miners are more profitable than pool miners. However, pool mining is enticing for solo miners who 1) have limited hardware as it ensures a steady income instead of highly profitable but probabilistic income via solo mining, and 2) who prefer convenient software and/or GUI.
What is the next step, then? While the barrier of entry for solo miners has successfully been put down, additional work needs to be done. The PascalCoin team and the community are earnestly investigating additional steps to improve mining decentralization with respect to pool mining specifically to add on top of RandomHash’s successful elimination of GPU, ASIC, and dual-mining dominance.
It is likely that the PascalCoin community will promote the following two initiatives in the near future:
(1) Establish a community-driven, nonprofit mining pool with attractive incentives.
(2) Optimize RHMiner, PascalCoin’s official solo mining software, for performance upgrades.
A single pool dominance is likely short lived once more options emerge for individual CPU miners who want to avoid solo mining for whatever reason(s).
Let us use Bitcoin as an example. Bitcoin mining is dominated by ASICs and mining pools but no single pool is – at the time of this writing – even close on obtaining the hash majority. With CPU solo mining being a feasible option in conjunction with ASIC and GPU mining eradication with RandomHash, the future hash rate distribution of PascalCoin would be far more promising than Bitcoin’s hash rate distribution.
PascalCoin is the Unicorn Cryptocurrency
If you’ve read this far, let’s cut straight to the point: PascalCoin IS the unicorn cryptocurrency.
It is worth noting that PascalCoin is still a young cryptocurrency as it was launched at the end of 2016. This means that many features are still work in progress such as zn-SNARKs, smart contracts, and pool decentralization to name few. However, it appears that all of the unicorn criteria are within PascalCoin’s reach once PascalCoin’s technical roadmap is mostly completed.
Based on this expository on PascalCoin’s technology, there is every reason to believe that PascalCoin is the unicorn cryptocurrency. PascalCoin also solves two fundamental blockchain problems beyond the unicorn criteria that were previously considered unsolvable: blockchain size and simple address system. The SafeBox pushes PascalCoin to the forefront of cryptocurrency zeitgeist since it is a superior solution compared to UTXO, Directed Acyclic Graph (DAG), Block Lattice, Tangle, and any other blockchain innovations.


THE UNICORN

Author: Tyler Swob
submitted by Kosass to CryptoCurrency [link] [comments]

Antminer S9 no longer hashing?

Good morning folks,
I have an Antminer S9 that has performed flawlessly. After I moved it to a better location, I noticed that it no longer seems to be working. The green light is flashing, but it doesn't seem to be hashing to my pool (Nicehash).
I'm fairly new to Bitcoining mining and can't make sense of some of the information on my status screen. Before I jump into Bitmain support, I was wondering if anyone could clue me in as to what the problem might be.
https://s15.postimg.cc/i0n5qsyoInked_Capture_LI.jpg
I'll post my Kernal Log here.
Thank you in advance!!!
KERNAL LOG: [ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Linux version 3.14.0-xilinx-ge8a2f71-dirty ([email protected]) (gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-23) ) #82 SMP PREEMPT Tue May 16 19:49:53 CST 2017
[ 0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d
[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[ 0.000000] Machine model: Xilinx Zynq
[ 0.000000] cma: CMA: reserved 128 MiB at 27800000
[ 0.000000] Memory policy: Data cache writealloc
[ 0.000000] On node 0 totalpages: 258048
[ 0.000000] free_area_init_node: node 0, pgdat c0740a40, node_mem_map e6fd8000
[ 0.000000] Normal zone: 1520 pages used for memmap
[ 0.000000] Normal zone: 0 pages reserved
[ 0.000000] Normal zone: 194560 pages, LIFO batch:31
[ 0.000000] HighMem zone: 496 pages used for memmap
[ 0.000000] HighMem zone: 63488 pages, LIFO batch:15
[ 0.000000] PERCPU: Embedded 8 pages/cpu @e6fc0000 s9088 r8192 d15488 u32768
[ 0.000000] pcpu-alloc: s9088 r8192 d15488 u32768 alloc=8*4096
[ 0.000000] pcpu-alloc: [0] 0 [0] 1
[ 0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 256528
[ 0.000000] Kernel command line: noinitrd mem=1008M console=ttyPS0,115200 root=ubi0:rootfs ubi.mtd=1 rootfstype=ubifs rw rootwait
[ 0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
[ 0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
[ 0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
[ 0.000000] Memory: 884148K/1032192K available (5032K kernel code, 283K rwdata, 1916K rodata, 204K init, 258K bss, 148044K reserved, 253952K highmem)
[ 0.000000] Virtual kernel memory layout:
[ 0.000000] vector : 0xffff0000 - 0xffff1000 ( 4 kB)
[ 0.000000] fixmap : 0xfff00000 - 0xfffe0000 ( 896 kB)
[ 0.000000] vmalloc : 0xf0000000 - 0xff000000 ( 240 MB)
[ 0.000000] lowmem : 0xc0000000 - 0xef800000 ( 760 MB)
[ 0.000000] pkmap : 0xbfe00000 - 0xc0000000 ( 2 MB)
[ 0.000000] modules : 0xbf000000 - 0xbfe00000 ( 14 MB)
[ 0.000000] .text : 0xc0008000 - 0xc06d1374 (6949 kB)
[ 0.000000] .init : 0xc06d2000 - 0xc0705380 ( 205 kB)
[ 0.000000] .data : 0xc0706000 - 0xc074cf78 ( 284 kB)
[ 0.000000] .bss : 0xc074cf84 - 0xc078d9fc ( 259 kB)
[ 0.000000] Preemptible hierarchical RCU implementation.
[ 0.000000] Dump stacks of tasks blocking RCU-preempt GP.
[ 0.000000] RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2.
[ 0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2
[ 0.000000] NR_IRQS:16 nr_irqs:16 16
[ 0.000000] ps7-slcr mapped to f0004000
[ 0.000000] zynq_clock_init: clkc starts at f0004100
[ 0.000000] Zynq clock init
[ 0.000015] sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 3298534883328ns
[ 0.000308] ps7-ttc #0 at f0006000, irq=43
[ 0.000618] Console: colour dummy device 80x30
[ 0.000658] Calibrating delay loop... 1325.46 BogoMIPS (lpj=6627328)
[ 0.040207] pid_max: default: 32768 minimum: 301
[ 0.040436] Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.040459] Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.042612] CPU: Testing write buffer coherency: ok
[ 0.042974] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[ 0.043036] Setting up static identity map for 0x4c4b00 - 0x4c4b58
[ 0.043263] L310 cache controller enabled
[ 0.043282] l2x0: 8 ways, CACHE_ID 0x410000c8, AUX_CTRL 0x72760000, Cache size: 512 kB
[ 0.121037] CPU1: Booted secondary processor
[ 0.210227] CPU1: thread -1, cpu 1, socket 0, mpidr 80000001
[ 0.210357] Brought up 2 CPUs
[ 0.210376] SMP: Total of 2 processors activated.
[ 0.210385] CPU: All CPU(s) started in SVC mode.
[ 0.211051] devtmpfs: initialized
[ 0.213481] VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4
[ 0.214724] regulator-dummy: no parameters
[ 0.223736] NET: Registered protocol family 16
[ 0.226067] DMA: preallocated 256 KiB pool for atomic coherent allocations
[ 0.228361] cpuidle: using governor ladder
[ 0.228374] cpuidle: using governor menu
[ 0.235908] syscon f8000000.ps7-slcr: regmap [mem 0xf8000000-0xf8000fff] registered
[ 0.237440] hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
[ 0.237453] hw-breakpoint: maximum watchpoint size is 4 bytes.
[ 0.237572] zynq-ocm f800c000.ps7-ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0080000
[ 0.259435] bio: create slab at 0
[ 0.261172] vgaarb: loaded
[ 0.261915] SCSI subsystem initialized
[ 0.262814] usbcore: registered new interface driver usbfs
[ 0.262985] usbcore: registered new interface driver hub
[ 0.263217] usbcore: registered new device driver usb
[ 0.263743] media: Linux media interface: v0.10
[ 0.263902] Linux video capture interface: v2.00
[ 0.264150] pps_core: LinuxPPS API ver. 1 registered
[ 0.264162] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <[[email protected]](mailto:[email protected])>
[ 0.264286] PTP clock support registered
[ 0.264656] EDAC MC: Ver: 3.0.0
[ 0.265719] Advanced Linux Sound Architecture Driver Initialized.
[ 0.268708] DMA-API: preallocated 4096 debug entries
[ 0.268724] DMA-API: debugging enabled by kernel config
[ 0.268820] Switched to clocksource arm_global_timer
[ 0.289596] NET: Registered protocol family 2
[ 0.290280] TCP established hash table entries: 8192 (order: 3, 32768 bytes)
[ 0.290375] TCP bind hash table entries: 8192 (order: 4, 65536 bytes)
[ 0.290535] TCP: Hash tables configured (established 8192 bind 8192)
[ 0.290612] TCP: reno registered
[ 0.290633] UDP hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290689] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290971] NET: Registered protocol family 1
[ 0.291346] RPC: Registered named UNIX socket transport module.
[ 0.291359] RPC: Registered udp transport module.
[ 0.291368] RPC: Registered tcp transport module.
[ 0.291376] RPC: Registered tcp NFSv4.1 backchannel transport module.
[ 0.291391] PCI: CLS 0 bytes, default 64
[ 0.291857] hw perfevents: enabled with ARMv7 Cortex-A9 PMU driver, 7 counters available
[ 0.293945] futex hash table entries: 512 (order: 3, 32768 bytes)
[ 0.295408] bounce pool size: 64 pages
[ 0.296323] jffs2: version 2.2. (NAND) © 2001-2006 Red Hat, Inc.
[ 0.296525] msgmni has been set to 1486
[ 0.297330] io scheduler noop registered
[ 0.297343] io scheduler deadline registered
[ 0.297385] io scheduler cfq registered (default)
[ 0.308358] dma-pl330 f8003000.ps7-dma: Loaded driver for PL330 DMAC-2364208
[ 0.308380] dma-pl330 f8003000.ps7-dma: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4 Num_Events-16
[ 0.434378] e0001000.serial: ttyPS0 at MMIO 0xe0001000 (irq = 82, base_baud = 3124999) is a xuartps
[ 1.006815] console [ttyPS0] enabled
[ 1.011106] xdevcfg f8007000.ps7-dev-cfg: ioremap 0xf8007000 to f0068000
[ 1.018731] [drm] Initialized drm 1.1.0 20060810
[ 1.036029] brd: module loaded
[ 1.045494] loop: module loaded
[ 1.055163] e1000e: Intel(R) PRO/1000 Network Driver - 2.3.2-k
[ 1.060985] e1000e: Copyright(c) 1999 - 2013 Intel Corporation.
[ 1.068779] libphy: XEMACPS mii bus: probed
[ 1.073341] ------------- phy_id = 0x3625e62
[ 1.078112] xemacps e000b000.ps7-ethernet: pdev->id -1, baseaddr 0xe000b000, irq 54
[ 1.087072] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[ 1.093912] ehci-pci: EHCI PCI platform driver
[ 1.101155] zynq-dr e0002000.ps7-usb: Unable to init USB phy, missing?
[ 1.107952] usbcore: registered new interface driver usb-storage
[ 1.114850] mousedev: PS/2 mouse device common for all mice
[ 1.120975] i2c /dev entries driver
[ 1.127946] zynq-edac f8006000.ps7-ddrc: ecc not enabled
[ 1.133474] cpufreq_cpu0: failed to get cpu0 regulator: -19
[ 1.139426] Xilinx Zynq CpuIdle Driver started
[ 1.144261] sdhci: Secure Digital Host Controller Interface driver
[ 1.150384] sdhci: Copyright(c) Pierre Ossman
[ 1.154700] sdhci-pltfm: SDHCI platform and OF driver helper
[ 1.161601] mmc0: no vqmmc regulator found
[ 1.165614] mmc0: no vmmc regulator found
[ 1.208845] mmc0: SDHCI controller on e0100000.ps7-sdio [e0100000.ps7-sdio] using ADMA
[ 1.217539] usbcore: registered new interface driver usbhid
[ 1.223054] usbhid: USB HID core driver
[ 1.227806] nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
[ 1.234107] nand: Micron MT29F2G08ABAEAWP
[ 1.238074] nand: 256MiB, SLC, page size: 2048, OOB size: 64
[ 1.244027] Bad block table found at page 131008, version 0x01
[ 1.250251] Bad block table found at page 130944, version 0x01
[ 1.256303] 3 ofpart partitions found on MTD device pl353-nand
[ 1.262080] Creating 3 MTD partitions on "pl353-nand":
[ 1.267174] 0x000000000000-0x000002000000 : "BOOT.bin-env-dts-kernel"
[ 1.275230] 0x000002000000-0x00000b000000 : "angstram-rootfs"
[ 1.282582] 0x00000b000000-0x000010000000 : "upgrade-rootfs"
[ 1.291630] TCP: cubic registered
[ 1.294869] NET: Registered protocol family 17
[ 1.299597] Registering SWP/SWPB emulation handler
[ 1.305497] regulator-dummy: disabling
[ 1.309875] UBI: attaching mtd1 to ubi0
[ 1.836565] UBI: scanning is finished
[ 1.848221] UBI: attached mtd1 (name "angstram-rootfs", size 144 MiB) to ubi0
[ 1.855302] UBI: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
[ 1.862063] UBI: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
[ 1.868728] UBI: VID header offset: 2048 (aligned 2048), data offset: 4096
[ 1.875605] UBI: good PEBs: 1152, bad PEBs: 0, corrupted PEBs: 0
[ 1.881586] UBI: user volume: 1, internal volumes: 1, max. volumes count: 128
[ 1.888693] UBI: max/mean erase counter: 4/1, WL threshold: 4096, image sequence number: 1134783803
[ 1.897736] UBI: available PEBs: 0, total reserved PEBs: 1152, PEBs reserved for bad PEB handling: 40
[ 1.906953] UBI: background thread "ubi_bgt0d" started, PID 1080
[ 1.906959] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
[ 1.911038] ALSA device list:
[ 1.911042] No soundcards found.
[ 1.927420] UBIFS: background thread "ubifs_bgt0_0" started, PID 1082
[ 1.956473] UBIFS: recovery needed
[ 2.016970] UBIFS: recovery completed
[ 2.020709] UBIFS: mounted UBI device 0, volume 0, name "rootfs"
[ 2.026635] UBIFS: LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[ 2.035771] UBIFS: FS size: 128626688 bytes (122 MiB, 1013 LEBs), journal size 9023488 bytes (8 MiB, 72 LEBs)
[ 2.045653] UBIFS: reserved for root: 0 bytes (0 KiB)
[ 2.050693] UBIFS: media format: w4/r0 (latest is w4/r0), UUID B079DD56-06BB-4E31-8F5E-A6604F480DB2, small LPT model
[ 2.061987] VFS: Mounted root (ubifs filesystem) on device 0:11.
[ 2.069184] devtmpfs: mounted
[ 2.072297] Freeing unused kernel memory: 204K (c06d2000 - c0705000)
[ 2.920928] random: dd urandom read with 0 bits of entropy available
[ 3.318860]
[ 3.318860] bcm54xx_config_init
[ 3.928853]
[ 3.928853] bcm54xx_config_init
[ 7.929682] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 7.935787] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
[ 22.563181] In axi fpga driver!
[ 22.566260] request_mem_region OK!
[ 22.569676] AXI fpga dev virtual address is 0xf01fe000
[ 22.574751] *base_vir_addr = 0x8c510
[ 22.590723] In fpga mem driver!
[ 22.593791] request_mem_region OK!
[ 22.597361] fpga mem virtual address is 0xf3000000
[ 23.408156]
[ 23.408156] bcm54xx_config_init
[ 24.038071]
[ 24.038071] bcm54xx_config_init
[ 28.038487] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 28.044593] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
This is XILINX board. Totalram: 1039794176
Detect 1GB control board of XILINX
DETECT HW version=0008c510
miner ID : 8118b4c610358854
Miner Type = S9
AsicType = 1387
real AsicNum = 63
use critical mode to search freq...
get PLUG ON=0x000000e0
Find hashboard on Chain[5]
Find hashboard on Chain[6]
Find hashboard on Chain[7]
set_reset_allhashboard = 0x0000ffff
Check chain[5] PIC fw version=0x03
Check chain[6] PIC fw version=0x03
Check chain[7] PIC fw version=0x03
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[5] has freq in PIC and will jump over...
Chain[5] has core num in PIC
Chain[5] ASIC[15] has core num=5
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[6] has freq in PIC and will jump over...
Chain[6] has core num in PIC
Chain[6] ASIC[17] has core num=8
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[7] has freq in PIC and will jump over...
Chain[7] has core num in PIC
Chain[7] ASIC[8] has core num=13
Chain[7] ASIC[9] has core num=11
Chain[7] ASIC[13] has core num=11
Chain[7] ASIC[19] has core num=14
Chain[7] ASIC[30] has core num=6
Chain[7] ASIC[32] has core num=1
Chain[7] ASIC[42] has core num=2
Chain[7] ASIC[55] has core num=1
Chain[7] ASIC[57] has core num=2
Check chain[7] PIC fw version=0x03
get PIC voltage=108 on chain[5], value=880
get PIC voltage=74 on chain[6], value=900
get PIC voltage=108 on chain[7], value=880
set_reset_allhashboard = 0x00000000
chain[5] temp offset record: 62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
chain[6] temp offset record: 62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
chain[7] temp offset record: 62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
CRC error counter=0
set command mode to VIL
--- check asic number
After Get ASIC NUM CRC error counter=0
set_baud=0
The min freq=700
set real timeout 52, need sleep=379392
After TEST CRC error counter=0
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
search freq for 1 times, completed chain = 3, total chain num = 3
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
restart Miner chance num=2
waiting for receive_func to exit!
waiting for pic heart to exit!
bmminer not found= 1643 root 0:00 grep bmminer
bmminer not found, restart bmminer ...
This is user mode for mining
Detect 1GB control board of XILINX
Miner Type = S9
Miner compile time: Fri Nov 17 17:57:49 CST 2017 type: Antminer S9set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
set_reset_allhashboard = 0x0000ffff
miner ID : 8118b4c610358854
set_reset_allhashboard = 0x0000ffff
Checking fans!get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J6] has backup chain_voltage=880
Chain[J6] test patten OK temp=-126
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J7] has backup chain_voltage=900
Chain[J7] test patten OK temp=-120
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J8] has backup chain_voltage=880
Chain[J8] test patten OK temp=-125
Check chain[7] PIC fw version=0x03
Chain[J6] orignal chain_voltage_pic=108 value=880
Chain[J7] orignal chain_voltage_pic=74 value=900
Chain[J8] orignal chain_voltage_pic=108 value=880
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
Chain[J6] has 63 asic
Chain[J7] has 63 asic
Chain[J8] has 63 asic
Chain[J6] has core num in PIC
Chain[J6] ASIC[15] has core num=5
Chain[J7] has core num in PIC
Chain[J7] ASIC[17] has core num=8
Chain[J8] has core num in PIC
Chain[J8] ASIC[8] has core num=13
Chain[J8] ASIC[9] has core num=11
Chain[J8] ASIC[13] has core num=11
Chain[J8] ASIC[19] has core num=14
Chain[J8] ASIC[30] has core num=6
Chain[J8] ASIC[32] has core num=1
Chain[J8] ASIC[42] has core num=2
Chain[J8] ASIC[55] has core num=1
Chain[J8] ASIC[57] has core num=2
miner total rate=13999GH/s fixed rate=13500GH/s
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:681 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:681 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:675
Asic[ 9]:618 Asic[10]:631 Asic[11]:681 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:675 Asic[18]:618 Asic[19]:637 Asic[20]:675 Asic[21]:631 Asic[22]:650 Asic[23]:687 Asic[24]:631
Asic[25]:537 Asic[26]:687 Asic[27]:631 Asic[28]:587 Asic[29]:687 Asic[30]:612 Asic[31]:650 Asic[32]:687
Asic[33]:631 Asic[34]:650 Asic[35]:687 Asic[36]:631 Asic[37]:662 Asic[38]:693 Asic[39]:631 Asic[40]:662
Asic[41]:662 Asic[42]:543 Asic[43]:668 Asic[44]:693 Asic[45]:568 Asic[46]:675 Asic[47]:700 Asic[48]:631
Asic[49]:568 Asic[50]:700 Asic[51]:631 Asic[52]:625 Asic[53]:700 Asic[54]:631 Asic[55]:675 Asic[56]:662
Asic[57]:631 Asic[58]:662 Asic[59]:687 Asic[60]:631 Asic[61]:681 Asic[62]:700
Chain:5 max freq=700
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:650
Asic[ 1]:650 Asic[ 2]:650 Asic[ 3]:650 Asic[ 4]:650 Asic[ 5]:650 Asic[ 6]:650 Asic[ 7]:650 Asic[ 8]:650
Asic[ 9]:650 Asic[10]:650 Asic[11]:650 Asic[12]:650 Asic[13]:650 Asic[14]:650 Asic[15]:650 Asic[16]:650
Asic[17]:650 Asic[18]:650 Asic[19]:650 Asic[20]:650 Asic[21]:650 Asic[22]:650 Asic[23]:650 Asic[24]:650
Asic[25]:650 Asic[26]:656 Asic[27]:656 Asic[28]:656 Asic[29]:656 Asic[30]:656 Asic[31]:656 Asic[32]:656
Asic[33]:656 Asic[34]:656 Asic[35]:656 Asic[36]:656 Asic[37]:656 Asic[38]:656 Asic[39]:656 Asic[40]:656
Asic[41]:656 Asic[42]:656 Asic[43]:656 Asic[44]:656 Asic[45]:656 Asic[46]:656 Asic[47]:656 Asic[48]:656
Asic[49]:656 Asic[50]:656 Asic[51]:656 Asic[52]:656 Asic[53]:656 Asic[54]:656 Asic[55]:656 Asic[56]:656
Asic[57]:656 Asic[58]:656 Asic[59]:656 Asic[60]:656 Asic[61]:656 Asic[62]:656
Chain:6 max freq=656
Chain:6 min freq=650
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:656
Asic[ 1]:656 Asic[ 2]:656 Asic[ 3]:656 Asic[ 4]:656 Asic[ 5]:656 Asic[ 6]:656 Asic[ 7]:656 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:656 Asic[11]:656 Asic[12]:656 Asic[13]:637 Asic[14]:656 Asic[15]:662 Asic[16]:662
Asic[17]:662 Asic[18]:662 Asic[19]:637 Asic[20]:662 Asic[21]:662 Asic[22]:662 Asic[23]:662 Asic[24]:662
Asic[25]:662 Asic[26]:662 Asic[27]:662 Asic[28]:662 Asic[29]:662 Asic[30]:637 Asic[31]:662 Asic[32]:662
Asic[33]:662 Asic[34]:662 Asic[35]:662 Asic[36]:662 Asic[37]:662 Asic[38]:662 Asic[39]:662 Asic[40]:662
Asic[41]:662 Asic[42]:650 Asic[43]:662 Asic[44]:662 Asic[45]:662 Asic[46]:662 Asic[47]:662 Asic[48]:662
Asic[49]:662 Asic[50]:662 Asic[51]:662 Asic[52]:662 Asic[53]:662 Asic[54]:662 Asic[55]:650 Asic[56]:662
Asic[57]:650 Asic[58]:662 Asic[59]:662 Asic[60]:662 Asic[61]:662 Asic[62]:662
Chain:7 max freq=662
Chain:7 min freq=637
Miner fix freq ...
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:650 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:656 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:656
Asic[ 9]:618 Asic[10]:631 Asic[11]:656 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:656 Asic[18]:618 Asic[19]:637 Asic[20]:656 Asic[21]:631 Asic[22]:650 Asic[23]:656 Asic[24]:631
Asic[25]:537 Asic[26]:656 Asic[27]:631 Asic[28]:587 Asic[29]:656 Asic[30]:612 Asic[31]:650 Asic[32]:656
Asic[33]:631 Asic[34]:650 Asic[35]:656 Asic[36]:631 Asic[37]:656 Asic[38]:656 Asic[39]:631 Asic[40]:656
Asic[41]:656 Asic[42]:543 Asic[43]:656 Asic[44]:656 Asic[45]:568 Asic[46]:656 Asic[47]:656 Asic[48]:631
Asic[49]:568 Asic[50]:656 Asic[51]:631 Asic[52]:625 Asic[53]:656 Asic[54]:631 Asic[55]:656 Asic[56]:656
Asic[57]:631 Asic[58]:656 Asic[59]:656 Asic[60]:631 Asic[61]:656 Asic[62]:656
Chain:5 max freq=656
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:631
Asic[ 1]:631 Asic[ 2]:631 Asic[ 3]:631 Asic[ 4]:631 Asic[ 5]:631 Asic[ 6]:631 Asic[ 7]:631 Asic[ 8]:631
Asic[ 9]:631 Asic[10]:631 Asic[11]:631 Asic[12]:631 Asic[13]:631 Asic[14]:631 Asic[15]:631 Asic[16]:631
Asic[17]:631 Asic[18]:631 Asic[19]:631 Asic[20]:631 Asic[21]:631 Asic[22]:631 Asic[23]:631 Asic[24]:631
Asic[25]:631 Asic[26]:631 Asic[27]:631 Asic[28]:631 Asic[29]:631 Asic[30]:631 Asic[31]:631 Asic[32]:631
Asic[33]:631 Asic[34]:631 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:637 Asic[50]:637 Asic[51]:637 Asic[52]:637 Asic[53]:637 Asic[54]:637 Asic[55]:637 Asic[56]:637
Asic[57]:637 Asic[58]:637 Asic[59]:637 Asic[60]:637 Asic[61]:637 Asic[62]:637
Chain:6 max freq=637
Chain:6 min freq=631
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:637
Asic[ 1]:637 Asic[ 2]:637 Asic[ 3]:637 Asic[ 4]:637 Asic[ 5]:637 Asic[ 6]:637 Asic[ 7]:637 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:637 Asic[11]:637 Asic[12]:637 Asic[13]:637 Asic[14]:637 Asic[15]:637 Asic[16]:637
Asic[17]:637 Asic[18]:637 Asic[19]:637 Asic[20]:637 Asic[21]:637 Asic[22]:637 Asic[23]:637 Asic[24]:637
Asic[25]:637 Asic[26]:637 Asic[27]:637 Asic[28]:637 Asic[29]:637 Asic[30]:637 Asic[31]:637 Asic[32]:637
Asic[33]:637 Asic[34]:637 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:643 Asic[50]:643 Asic[51]:643 Asic[52]:643 Asic[53]:643 Asic[54]:643 Asic[55]:643 Asic[56]:643
Asic[57]:643 Asic[58]:643 Asic[59]:643 Asic[60]:643 Asic[61]:643 Asic[62]:643
Chain:7 max freq=643
Chain:7 min freq=637
max freq = 656
set baud=1
Chain[J6] PIC temp offset=62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
Chain[J6] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[5] chip[244] local:26 remote:27 offset:29
Chain[J6] chip[244] get middle temp offset=29 typeID=55
Chain[J7] PIC temp offset=62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
Chain[J7] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[6] chip[244] local:26 remote:27 offset:29
Chain[J7] chip[244] get middle temp offset=29 typeID=55
Chain[J8] PIC temp offset=62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
Chain[J8] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[7] chip[244] local:26 remote:28 offset:28
Chain[J8] chip[244] get middle temp offset=28 typeID=55
miner rate=13501 voltage limit=900 on chain[5]
get PIC voltage=880 on chain[5], check: must be < 900
miner rate=13501 voltage limit=900 on chain[6]
get PIC voltage=900 on chain[6], check: must be < 900
miner rate=13501 voltage limit=900 on chain[7]
get PIC voltage=880 on chain[7], check: must be < 900
Chain[J6] set working voltage=880 [108]
Chain[J7] set working voltage=900 [74]
Chain[J8] set working voltage=880 [108]
do heat board 8xPatten for 1 times
start send works on chain[5]
start send works on chain[6]
start send works on chain[7]
get send work num :57456 on Chain[5]
get send work num :57456 on Chain[6]
get send work num :57456 on Chain[7]
wait recv nonce on chain[5]
wait recv nonce on chain[6]
wait recv nonce on chain[7]
get nonces on chain[5]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=618 freq[01]=631 freq[02]=650 freq[03]=618 freq[04]=631 freq[05]=656 freq[06]=618 freq[07]=631
freq[08]=656 freq[09]=618 freq[10]=631 freq[11]=656 freq[12]=631 freq[13]=637 freq[14]=606 freq[15]=487
freq[16]=637 freq[17]=656 freq[18]=618 freq[19]=637 freq[20]=656 freq[21]=631 freq[22]=650 freq[23]=656
freq[24]=631 freq[25]=537 freq[26]=656 freq[27]=631 freq[28]=587 freq[29]=656 freq[30]=612 freq[31]=650
freq[32]=656 freq[33]=631 freq[34]=650 freq[35]=656 freq[36]=631 freq[37]=656 freq[38]=656 freq[39]=631
freq[40]=656 freq[41]=656 freq[42]=543 freq[43]=656 freq[44]=656 freq[45]=568 freq[46]=656 freq[47]=656
freq[48]=631 freq[49]=568 freq[50]=656 freq[51]=631 freq[52]=625 freq[53]=656 freq[54]=631 freq[55]=656
freq[56]=656 freq[57]=631 freq[58]=656 freq[59]=656 freq[60]=631 freq[61]=656 freq[62]=656
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25912
last_nonce_num:14370
get nonces on chain[6]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=631 freq[01]=631 freq[02]=631 freq[03]=631 freq[04]=631 freq[05]=631 freq[06]=631 freq[07]=631
freq[08]=631 freq[09]=631 freq[10]=631 freq[11]=631 freq[12]=631 freq[13]=631 freq[14]=631 freq[15]=631
freq[16]=631 freq[17]=631 freq[18]=631 freq[19]=631 freq[20]=631 freq[21]=631 freq[22]=631 freq[23]=631
freq[24]=631 freq[25]=631 freq[26]=631 freq[27]=631 freq[28]=631 freq[29]=631 freq[30]=631 freq[31]=631
freq[32]=631 freq[33]=631 freq[34]=631 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=637 freq[50]=637 freq[51]=637 freq[52]=637 freq[53]=637 freq[54]=637 freq[55]=637
freq[56]=637 freq[57]=637 freq[58]=637 freq[59]=637 freq[60]=637 freq[61]=637 freq[62]=637
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25987
last_nonce_num:14368
get nonces on chain[7]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=907 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=909 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=911
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
asic[08]=907
core[049]=7 core[053]=5 core[056]=7
asic[19]=909
core[064]=7 core[112]=6
asic[55]=911
core[007]=7
freq[00]=637 freq[01]=637 freq[02]=637 freq[03]=637 freq[04]=637 freq[05]=637 freq[06]=637 freq[07]=637
freq[08]=637 freq[09]=637 freq[10]=637 freq[11]=637 freq[12]=637 freq[13]=637 freq[14]=637 freq[15]=637
freq[16]=637 freq[17]=637 freq[18]=637 freq[19]=637 freq[20]=637 freq[21]=637 freq[22]=637 freq[23]=637
freq[24]=637 freq[25]=637 freq[26]=637 freq[27]=637 freq[28]=637 freq[29]=637 freq[30]=637 freq[31]=637
freq[32]=637 freq[33]=637 freq[34]=637 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=643 freq[50]=643 freq[51]=643 freq[52]=643 freq[53]=643 freq[54]=643 freq[55]=643
freq[56]=643 freq[57]=643 freq[58]=643 freq[59]=643 freq[60]=643 freq[61]=643 freq[62]=643
total valid nonce number:57447
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:26183
last_nonce_num:35748
chain[5]: All chip cores are opened OK!
Test Patten on chain[5]: OK!
chain[6]: All chip cores are opened OK!
Test Patten on chain[6]: OK!
chain[7]: All chip cores are opened OK!
Test Patten on chain[7]: OK!
setStartTimePoint total_tv_start_sys=217 total_tv_end_sys=218
restartNum = 2 , auto-reinit enabled...
do read_temp_func once...
do check_asic_reg 0x08
get RT hashrate from Chain[5]: (asic index start from 1-63)
Asic[01]=72.5110 Asic[02]=68.6020 Asic[03]=74.4230 Asic[04]=74.6750 Asic[05]=71.4540 Asic[06]=77.5610 Asic[07]=74.7760 Asic[08]=74.3900
Asic[09]=77.7790 Asic[10]=76.7220 Asic[11]=73.8020 Asic[12]=68.5850 Asic[13]=76.1680 Asic[14]=72.4770 Asic[15]=73.0470 Asic[16]=57.8810
Asic[17]=74.4740 Asic[18]=76.4530 Asic[19]=67.8800 Asic[20]=70.1280 Asic[21]=73.7520 Asic[22]=74.6580 Asic[23]=73.6850 Asic[24]=78.5170
Asic[25]=73.6850 Asic[26]=63.6860 Asic[27]=80.9660 Asic[28]=73.9200 Asic[29]=68.9870 Asic[30]=75.6310 Asic[31]=74.9770 Asic[32]=69.4570
Asic[33]=74.6580 Asic[34]=79.8930 Asic[35]=76.6710 Asic[36]=74.3730 Asic[37]=66.6050 Asic[38]=76.7380 Asic[39]=71.4540 Asic[40]=69.3060
Asic[41]=72.5610 Asic[42]=73.8530 Asic[43]=58.9210 Asic[44]=75.3800 Asic[45]=73.1310 Asic[46]=68.4000 Asic[47]=77.6780 Asic[48]=73.1150
Asic[49]=69.2890 Asic[50]=62.8130 Asic[51]=74.2720 Asic[52]=73.1480 Asic[53]=67.4440 Asic[54]=72.4940 Asic[55]=68.1990 Asic[56]=72.4100
Asic[57]=75.3460 Asic[58]=66.1350 Asic[59]=72.9800 Asic[60]=78.1480 Asic[61]=72.3260 Asic[62]=72.5610 Asic[63]=77.7950
get RT hashrate from Chain[6]: (asic index start from 1-63)
Asic[01]=67.6620 Asic[02]=75.9840 Asic[03]=70.3300 Asic[04]=75.5640 Asic[05]=62.8470 Asic[06]=70.2790 Asic[07]=74.5240 Asic[08]=72.9130
Asic[09]=70.6320 Asic[10]=72.5610 Asic[11]=73.9370 Asic[12]=77.3420 Asic[13]=72.4440 Asic[14]=68.8030 Asic[15]=73.0810 Asic[16]=73.8360
Asic[17]=73.5510 Asic[18]=73.9700 Asic[19]=71.0340 Asic[20]=71.1680 Asic[21]=72.1580 Asic[22]=78.8190 Asic[23]=71.9230 Asic[24]=69.4570
Asic[25]=67.7630 Asic[26]=71.7220 Asic[27]=76.4030 Asic[28]=71.1180 Asic[29]=68.7360 Asic[30]=69.7090 Asic[31]=77.5610 Asic[32]=70.1790
Asic[33]=67.9140 Asic[34]=72.3930 Asic[35]=64.5920 Asic[36]=72.1920 Asic[37]=74.6080 Asic[38]=75.4470 Asic[39]=73.8700 Asic[40]=73.9370
Asic[41]=66.2860 Asic[42]=79.4230 Asic[43]=75.8160 Asic[44]=68.6350 Asic[45]=74.7920 Asic[46]=70.7990 Asic[47]=71.2360 Asic[48]=73.8700
Asic[49]=66.5380 Asic[50]=70.6150 Asic[51]=72.6280 Asic[52]=75.7490 Asic[53]=71.8400 Asic[54]=76.5370 Asic[55]=73.5340 Asic[56]=69.2390
Asic[57]=75.1280 Asic[58]=74.3230 Asic[59]=73.4330 Asic[60]=72.3430 Asic[61]=77.6780 Asic[62]=82.4600 Asic[63]=69.5240
get RT hashrate from Chain[7]: (asic index start from 1-63)
Asic[01]=73.5510 Asic[02]=75.9160 Asic[03]=80.1110 Asic[04]=76.9900 Asic[05]=76.1510 Asic[06]=73.5170 Asic[07]=74.9940 Asic[08]=73.1150
Asic[09]=70.6650 Asic[10]=70.6990 Asic[11]=72.4770 Asic[12]=70.1450 Asic[13]=74.3060 Asic[14]=71.8060 Asic[15]=74.7420 Asic[16]=75.6650
Asic[17]=76.8220 Asic[18]=69.5240 Asic[19]=72.0910 Asic[20]=75.2620 Asic[21]=72.0240 Asic[22]=73.2660 Asic[23]=76.2690 Asic[24]=69.9440
Asic[25]=67.7290 Asic[26]=71.7050 Asic[27]=74.6250 Asic[28]=78.2320 Asic[29]=69.8430 Asic[30]=68.4670 Asic[31]=71.5210 Asic[32]=68.9540
Asic[33]=74.6250 Asic[34]=71.8730 Asic[35]=74.4400 Asic[36]=74.8760 Asic[37]=73.9030 Asic[38]=72.9300 Asic[39]=69.6250 Asic[40]=74.9430
Asic[41]=72.7620 Asic[42]=69.4910 Asic[43]=67.4270 Asic[44]=71.4870 Asic[45]=74.4570 Asic[46]=66.6550 Asic[47]=67.5450 Asic[48]=75.4800
Asic[49]=72.2590 Asic[50]=72.9300 Asic[51]=75.6820 Asic[52]=71.9070 Asic[53]=67.9640 Asic[54]=67.8470 Asic[55]=74.3900 Asic[56]=71.0010
Asic[57]=75.8490 Asic[58]=74.9270 Asic[59]=72.3930 Asic[60]=74.3730 Asic[61]=75.5310 Asic[62]=73.8190 Asic[63]=72.4440
Check Chain[J6] ASIC RT error: (asic index start from 1-63)
Check Chain[J7] ASIC RT error: (asic index start from 1-63)
Check Chain[J8] ASIC RT error: (asic index start from 1-63)
Done check_asic_reg
do read temp on Chain[5]
Chain[5] Chip[62] TempTypeID=55 middle offset=29
Chain[5] Chip[62] local Temp=60
Chain[5] Chip[62] middle Temp=70
Special fix Chain[5] Chip[62] middle Temp = 75
Done read temp on Chain[5]
do read temp on Chain[6]
Chain[6] Chip[62] TempTypeID=55 middle offset=29
Chain[6] Chip[62] local Temp=60
Chain[6] Chip[62] middle Temp=72
Special fix Chain[6] Chip[62] middle Temp = 75
Done read temp on Chain[6]
do read temp on Chain[7]
Chain[7] Chip[62] TempTypeID=55 middle offset=28
Chain[7] Chip[62] local Temp=62
Chain[7] Chip[62] middle Temp=72
Special fix Chain[7] Chip[62] middle Temp = 77
Done read temp on Chain[7]
set FAN speed according to: temp_highest=62 temp_top1[PWM_T]=62 temp_top1[TEMP_POS_LOCAL]=62 temp_change=0 fix_fan_steps=0
FAN PWM: 74
read_temp_func Done!
CRC error counter=0
submitted by Timsierramist to BitcoinMining [link] [comments]

Antminer S9 not hashing?

Good morning folks,
I have an Antminer S9 that has performed flawlessly. After I moved it to a better location, I noticed that it no longer seems to be working. The green light is flashing, but it doesn't seem to be hashing to my pool (Nicehash).
I'm fairly new to Bitcoining mining and can't make sense of some of the information on my status screen. Before I jump into Bitmain support, I was wondering if anyone could clue me in as to what the problem might be.
https://s15.postimg.cc/i0n5qsyoInked_Capture_LI.jpg
I'll post my Kernal Log here.
Thank you in advance!!!
KERNAL LOG: [ 0.000000] Booting Linux on physical CPU 0x0
[ 0.000000] Linux version 3.14.0-xilinx-ge8a2f71-dirty ([email protected]) (gcc version 4.8.3 20140320 (prerelease) (Sourcery CodeBench Lite 2014.05-23) ) #82 SMP PREEMPT Tue May 16 19:49:53 CST 2017
[ 0.000000] CPU: ARMv7 Processor [413fc090] revision 0 (ARMv7), cr=18c5387d
[ 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[ 0.000000] Machine model: Xilinx Zynq
[ 0.000000] cma: CMA: reserved 128 MiB at 27800000
[ 0.000000] Memory policy: Data cache writealloc
[ 0.000000] On node 0 totalpages: 258048
[ 0.000000] free_area_init_node: node 0, pgdat c0740a40, node_mem_map e6fd8000
[ 0.000000] Normal zone: 1520 pages used for memmap
[ 0.000000] Normal zone: 0 pages reserved
[ 0.000000] Normal zone: 194560 pages, LIFO batch:31
[ 0.000000] HighMem zone: 496 pages used for memmap
[ 0.000000] HighMem zone: 63488 pages, LIFO batch:15
[ 0.000000] PERCPU: Embedded 8 pages/cpu @e6fc0000 s9088 r8192 d15488 u32768
[ 0.000000] pcpu-alloc: s9088 r8192 d15488 u32768 alloc=8*4096
[ 0.000000] pcpu-alloc: [0] 0 [0] 1
[ 0.000000] Built 1 zonelists in Zone order, mobility grouping on. Total pages: 256528
[ 0.000000] Kernel command line: noinitrd mem=1008M console=ttyPS0,115200 root=ubi0:rootfs ubi.mtd=1 rootfstype=ubifs rw rootwait
[ 0.000000] PID hash table entries: 4096 (order: 2, 16384 bytes)
[ 0.000000] Dentry cache hash table entries: 131072 (order: 7, 524288 bytes)
[ 0.000000] Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
[ 0.000000] Memory: 884148K/1032192K available (5032K kernel code, 283K rwdata, 1916K rodata, 204K init, 258K bss, 148044K reserved, 253952K highmem)
[ 0.000000] Virtual kernel memory layout:
[ 0.000000] vector : 0xffff0000 - 0xffff1000 ( 4 kB)
[ 0.000000] fixmap : 0xfff00000 - 0xfffe0000 ( 896 kB)
[ 0.000000] vmalloc : 0xf0000000 - 0xff000000 ( 240 MB)
[ 0.000000] lowmem : 0xc0000000 - 0xef800000 ( 760 MB)
[ 0.000000] pkmap : 0xbfe00000 - 0xc0000000 ( 2 MB)
[ 0.000000] modules : 0xbf000000 - 0xbfe00000 ( 14 MB)
[ 0.000000] .text : 0xc0008000 - 0xc06d1374 (6949 kB)
[ 0.000000] .init : 0xc06d2000 - 0xc0705380 ( 205 kB)
[ 0.000000] .data : 0xc0706000 - 0xc074cf78 ( 284 kB)
[ 0.000000] .bss : 0xc074cf84 - 0xc078d9fc ( 259 kB)
[ 0.000000] Preemptible hierarchical RCU implementation.
[ 0.000000] Dump stacks of tasks blocking RCU-preempt GP.
[ 0.000000] RCU restricting CPUs from NR_CPUS=4 to nr_cpu_ids=2.
[ 0.000000] RCU: Adjusting geometry for rcu_fanout_leaf=16, nr_cpu_ids=2
[ 0.000000] NR_IRQS:16 nr_irqs:16 16
[ 0.000000] ps7-slcr mapped to f0004000
[ 0.000000] zynq_clock_init: clkc starts at f0004100
[ 0.000000] Zynq clock init
[ 0.000015] sched_clock: 64 bits at 333MHz, resolution 3ns, wraps every 3298534883328ns
[ 0.000308] ps7-ttc #0 at f0006000, irq=43
[ 0.000618] Console: colour dummy device 80x30
[ 0.000658] Calibrating delay loop... 1325.46 BogoMIPS (lpj=6627328)
[ 0.040207] pid_max: default: 32768 minimum: 301
[ 0.040436] Mount-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.040459] Mountpoint-cache hash table entries: 2048 (order: 1, 8192 bytes)
[ 0.042612] CPU: Testing write buffer coherency: ok
[ 0.042974] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[ 0.043036] Setting up static identity map for 0x4c4b00 - 0x4c4b58
[ 0.043263] L310 cache controller enabled
[ 0.043282] l2x0: 8 ways, CACHE_ID 0x410000c8, AUX_CTRL 0x72760000, Cache size: 512 kB
[ 0.121037] CPU1: Booted secondary processor
[ 0.210227] CPU1: thread -1, cpu 1, socket 0, mpidr 80000001
[ 0.210357] Brought up 2 CPUs
[ 0.210376] SMP: Total of 2 processors activated.
[ 0.210385] CPU: All CPU(s) started in SVC mode.
[ 0.211051] devtmpfs: initialized
[ 0.213481] VFP support v0.3: implementor 41 architecture 3 part 30 variant 9 rev 4
[ 0.214724] regulator-dummy: no parameters
[ 0.223736] NET: Registered protocol family 16
[ 0.226067] DMA: preallocated 256 KiB pool for atomic coherent allocations
[ 0.228361] cpuidle: using governor ladder
[ 0.228374] cpuidle: using governor menu
[ 0.235908] syscon f8000000.ps7-slcr: regmap [mem 0xf8000000-0xf8000fff] registered
[ 0.237440] hw-breakpoint: found 5 (+1 reserved) breakpoint and 1 watchpoint registers.
[ 0.237453] hw-breakpoint: maximum watchpoint size is 4 bytes.
[ 0.237572] zynq-ocm f800c000.ps7-ocmc: ZYNQ OCM pool: 256 KiB @ 0xf0080000
[ 0.259435] bio: create slab at 0
[ 0.261172] vgaarb: loaded
[ 0.261915] SCSI subsystem initialized
[ 0.262814] usbcore: registered new interface driver usbfs
[ 0.262985] usbcore: registered new interface driver hub
[ 0.263217] usbcore: registered new device driver usb
[ 0.263743] media: Linux media interface: v0.10
[ 0.263902] Linux video capture interface: v2.00
[ 0.264150] pps_core: LinuxPPS API ver. 1 registered
[ 0.264162] pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti <[[email protected]](mailto:[email protected])>
[ 0.264286] PTP clock support registered
[ 0.264656] EDAC MC: Ver: 3.0.0
[ 0.265719] Advanced Linux Sound Architecture Driver Initialized.
[ 0.268708] DMA-API: preallocated 4096 debug entries
[ 0.268724] DMA-API: debugging enabled by kernel config
[ 0.268820] Switched to clocksource arm_global_timer
[ 0.289596] NET: Registered protocol family 2
[ 0.290280] TCP established hash table entries: 8192 (order: 3, 32768 bytes)
[ 0.290375] TCP bind hash table entries: 8192 (order: 4, 65536 bytes)
[ 0.290535] TCP: Hash tables configured (established 8192 bind 8192)
[ 0.290612] TCP: reno registered
[ 0.290633] UDP hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290689] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes)
[ 0.290971] NET: Registered protocol family 1
[ 0.291346] RPC: Registered named UNIX socket transport module.
[ 0.291359] RPC: Registered udp transport module.
[ 0.291368] RPC: Registered tcp transport module.
[ 0.291376] RPC: Registered tcp NFSv4.1 backchannel transport module.
[ 0.291391] PCI: CLS 0 bytes, default 64
[ 0.291857] hw perfevents: enabled with ARMv7 Cortex-A9 PMU driver, 7 counters available
[ 0.293945] futex hash table entries: 512 (order: 3, 32768 bytes)
[ 0.295408] bounce pool size: 64 pages
[ 0.296323] jffs2: version 2.2. (NAND) © 2001-2006 Red Hat, Inc.
[ 0.296525] msgmni has been set to 1486
[ 0.297330] io scheduler noop registered
[ 0.297343] io scheduler deadline registered
[ 0.297385] io scheduler cfq registered (default)
[ 0.308358] dma-pl330 f8003000.ps7-dma: Loaded driver for PL330 DMAC-2364208
[ 0.308380] dma-pl330 f8003000.ps7-dma: DBUFF-128x8bytes Num_Chans-8 Num_Peri-4 Num_Events-16
[ 0.434378] e0001000.serial: ttyPS0 at MMIO 0xe0001000 (irq = 82, base_baud = 3124999) is a xuartps
[ 1.006815] console [ttyPS0] enabled
[ 1.011106] xdevcfg f8007000.ps7-dev-cfg: ioremap 0xf8007000 to f0068000
[ 1.018731] [drm] Initialized drm 1.1.0 20060810
[ 1.036029] brd: module loaded
[ 1.045494] loop: module loaded
[ 1.055163] e1000e: Intel(R) PRO/1000 Network Driver - 2.3.2-k
[ 1.060985] e1000e: Copyright(c) 1999 - 2013 Intel Corporation.
[ 1.068779] libphy: XEMACPS mii bus: probed
[ 1.073341] ------------- phy_id = 0x3625e62
[ 1.078112] xemacps e000b000.ps7-ethernet: pdev->id -1, baseaddr 0xe000b000, irq 54
[ 1.087072] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver
[ 1.093912] ehci-pci: EHCI PCI platform driver
[ 1.101155] zynq-dr e0002000.ps7-usb: Unable to init USB phy, missing?
[ 1.107952] usbcore: registered new interface driver usb-storage
[ 1.114850] mousedev: PS/2 mouse device common for all mice
[ 1.120975] i2c /dev entries driver
[ 1.127946] zynq-edac f8006000.ps7-ddrc: ecc not enabled
[ 1.133474] cpufreq_cpu0: failed to get cpu0 regulator: -19
[ 1.139426] Xilinx Zynq CpuIdle Driver started
[ 1.144261] sdhci: Secure Digital Host Controller Interface driver
[ 1.150384] sdhci: Copyright(c) Pierre Ossman
[ 1.154700] sdhci-pltfm: SDHCI platform and OF driver helper
[ 1.161601] mmc0: no vqmmc regulator found
[ 1.165614] mmc0: no vmmc regulator found
[ 1.208845] mmc0: SDHCI controller on e0100000.ps7-sdio [e0100000.ps7-sdio] using ADMA
[ 1.217539] usbcore: registered new interface driver usbhid
[ 1.223054] usbhid: USB HID core driver
[ 1.227806] nand: device found, Manufacturer ID: 0x2c, Chip ID: 0xda
[ 1.234107] nand: Micron MT29F2G08ABAEAWP
[ 1.238074] nand: 256MiB, SLC, page size: 2048, OOB size: 64
[ 1.244027] Bad block table found at page 131008, version 0x01
[ 1.250251] Bad block table found at page 130944, version 0x01
[ 1.256303] 3 ofpart partitions found on MTD device pl353-nand
[ 1.262080] Creating 3 MTD partitions on "pl353-nand":
[ 1.267174] 0x000000000000-0x000002000000 : "BOOT.bin-env-dts-kernel"
[ 1.275230] 0x000002000000-0x00000b000000 : "angstram-rootfs"
[ 1.282582] 0x00000b000000-0x000010000000 : "upgrade-rootfs"
[ 1.291630] TCP: cubic registered
[ 1.294869] NET: Registered protocol family 17
[ 1.299597] Registering SWP/SWPB emulation handler
[ 1.305497] regulator-dummy: disabling
[ 1.309875] UBI: attaching mtd1 to ubi0
[ 1.836565] UBI: scanning is finished
[ 1.848221] UBI: attached mtd1 (name "angstram-rootfs", size 144 MiB) to ubi0
[ 1.855302] UBI: PEB size: 131072 bytes (128 KiB), LEB size: 126976 bytes
[ 1.862063] UBI: min./max. I/O unit sizes: 2048/2048, sub-page size 2048
[ 1.868728] UBI: VID header offset: 2048 (aligned 2048), data offset: 4096
[ 1.875605] UBI: good PEBs: 1152, bad PEBs: 0, corrupted PEBs: 0
[ 1.881586] UBI: user volume: 1, internal volumes: 1, max. volumes count: 128
[ 1.888693] UBI: max/mean erase counter: 4/1, WL threshold: 4096, image sequence number: 1134783803
[ 1.897736] UBI: available PEBs: 0, total reserved PEBs: 1152, PEBs reserved for bad PEB handling: 40
[ 1.906953] UBI: background thread "ubi_bgt0d" started, PID 1080
[ 1.906959] drivers/rtc/hctosys.c: unable to open rtc device (rtc0)
[ 1.911038] ALSA device list:
[ 1.911042] No soundcards found.
[ 1.927420] UBIFS: background thread "ubifs_bgt0_0" started, PID 1082
[ 1.956473] UBIFS: recovery needed
[ 2.016970] UBIFS: recovery completed
[ 2.020709] UBIFS: mounted UBI device 0, volume 0, name "rootfs"
[ 2.026635] UBIFS: LEB size: 126976 bytes (124 KiB), min./max. I/O unit sizes: 2048 bytes/2048 bytes
[ 2.035771] UBIFS: FS size: 128626688 bytes (122 MiB, 1013 LEBs), journal size 9023488 bytes (8 MiB, 72 LEBs)
[ 2.045653] UBIFS: reserved for root: 0 bytes (0 KiB)
[ 2.050693] UBIFS: media format: w4/r0 (latest is w4/r0), UUID B079DD56-06BB-4E31-8F5E-A6604F480DB2, small LPT model
[ 2.061987] VFS: Mounted root (ubifs filesystem) on device 0:11.
[ 2.069184] devtmpfs: mounted
[ 2.072297] Freeing unused kernel memory: 204K (c06d2000 - c0705000)
[ 2.920928] random: dd urandom read with 0 bits of entropy available
[ 3.318860]
[ 3.318860] bcm54xx_config_init
[ 3.928853]
[ 3.928853] bcm54xx_config_init
[ 7.929682] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 7.935787] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
[ 22.563181] In axi fpga driver!
[ 22.566260] request_mem_region OK!
[ 22.569676] AXI fpga dev virtual address is 0xf01fe000
[ 22.574751] *base_vir_addr = 0x8c510
[ 22.590723] In fpga mem driver!
[ 22.593791] request_mem_region OK!
[ 22.597361] fpga mem virtual address is 0xf3000000
[ 23.408156]
[ 23.408156] bcm54xx_config_init
[ 24.038071]
[ 24.038071] bcm54xx_config_init
[ 28.038487] xemacps e000b000.ps7-ethernet: Set clk to 124999998 Hz
[ 28.044593] xemacps e000b000.ps7-ethernet: link up (1000/FULL)
This is XILINX board. Totalram: 1039794176
Detect 1GB control board of XILINX
DETECT HW version=0008c510
miner ID : 8118b4c610358854
Miner Type = S9
AsicType = 1387
real AsicNum = 63
use critical mode to search freq...
get PLUG ON=0x000000e0
Find hashboard on Chain[5]
Find hashboard on Chain[6]
Find hashboard on Chain[7]
set_reset_allhashboard = 0x0000ffff
Check chain[5] PIC fw version=0x03
Check chain[6] PIC fw version=0x03
Check chain[7] PIC fw version=0x03
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[5] has freq in PIC and will jump over...
Chain[5] has core num in PIC
Chain[5] ASIC[15] has core num=5
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[6] has freq in PIC and will jump over...
Chain[6] has core num in PIC
Chain[6] ASIC[17] has core num=8
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
has freq in PIC, will disable freq setting.
chain[7] has freq in PIC and will jump over...
Chain[7] has core num in PIC
Chain[7] ASIC[8] has core num=13
Chain[7] ASIC[9] has core num=11
Chain[7] ASIC[13] has core num=11
Chain[7] ASIC[19] has core num=14
Chain[7] ASIC[30] has core num=6
Chain[7] ASIC[32] has core num=1
Chain[7] ASIC[42] has core num=2
Chain[7] ASIC[55] has core num=1
Chain[7] ASIC[57] has core num=2
Check chain[7] PIC fw version=0x03
get PIC voltage=108 on chain[5], value=880
get PIC voltage=74 on chain[6], value=900
get PIC voltage=108 on chain[7], value=880
set_reset_allhashboard = 0x00000000
chain[5] temp offset record: 62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
chain[6] temp offset record: 62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
chain[7] temp offset record: 62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
CRC error counter=0
set command mode to VIL
--- check asic number
After Get ASIC NUM CRC error counter=0
set_baud=0
The min freq=700
set real timeout 52, need sleep=379392
After TEST CRC error counter=0
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
search freq for 1 times, completed chain = 3, total chain num = 3
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
restart Miner chance num=2
waiting for receive_func to exit!
waiting for pic heart to exit!
bmminer not found= 1643 root 0:00 grep bmminer
bmminer not found, restart bmminer ...
This is user mode for mining
Detect 1GB control board of XILINX
Miner Type = S9
Miner compile time: Fri Nov 17 17:57:49 CST 2017 type: Antminer S9set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
set_reset_allhashboard = 0x0000ffff
miner ID : 8118b4c610358854
set_reset_allhashboard = 0x0000ffff
Checking fans!get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
get fan[2] speed=6120
get fan[5] speed=13440
chain[5]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J6] has backup chain_voltage=880
Chain[J6] test patten OK temp=-126
Check chain[5] PIC fw version=0x03
chain[6]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J7] has backup chain_voltage=900
Chain[J7] test patten OK temp=-120
Check chain[6] PIC fw version=0x03
chain[7]: [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255] [63:255]
Chain[J8] has backup chain_voltage=880
Chain[J8] test patten OK temp=-125
Check chain[7] PIC fw version=0x03
Chain[J6] orignal chain_voltage_pic=108 value=880
Chain[J7] orignal chain_voltage_pic=74 value=900
Chain[J8] orignal chain_voltage_pic=108 value=880
set_reset_allhashboard = 0x0000ffff
set_reset_allhashboard = 0x00000000
Chain[J6] has 63 asic
Chain[J7] has 63 asic
Chain[J8] has 63 asic
Chain[J6] has core num in PIC
Chain[J6] ASIC[15] has core num=5
Chain[J7] has core num in PIC
Chain[J7] ASIC[17] has core num=8
Chain[J8] has core num in PIC
Chain[J8] ASIC[8] has core num=13
Chain[J8] ASIC[9] has core num=11
Chain[J8] ASIC[13] has core num=11
Chain[J8] ASIC[19] has core num=14
Chain[J8] ASIC[30] has core num=6
Chain[J8] ASIC[32] has core num=1
Chain[J8] ASIC[42] has core num=2
Chain[J8] ASIC[55] has core num=1
Chain[J8] ASIC[57] has core num=2
miner total rate=13999GH/s fixed rate=13500GH/s
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:681 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:681 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:675
Asic[ 9]:618 Asic[10]:631 Asic[11]:681 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:675 Asic[18]:618 Asic[19]:637 Asic[20]:675 Asic[21]:631 Asic[22]:650 Asic[23]:687 Asic[24]:631
Asic[25]:537 Asic[26]:687 Asic[27]:631 Asic[28]:587 Asic[29]:687 Asic[30]:612 Asic[31]:650 Asic[32]:687
Asic[33]:631 Asic[34]:650 Asic[35]:687 Asic[36]:631 Asic[37]:662 Asic[38]:693 Asic[39]:631 Asic[40]:662
Asic[41]:662 Asic[42]:543 Asic[43]:668 Asic[44]:693 Asic[45]:568 Asic[46]:675 Asic[47]:700 Asic[48]:631
Asic[49]:568 Asic[50]:700 Asic[51]:631 Asic[52]:625 Asic[53]:700 Asic[54]:631 Asic[55]:675 Asic[56]:662
Asic[57]:631 Asic[58]:662 Asic[59]:687 Asic[60]:631 Asic[61]:681 Asic[62]:700
Chain:5 max freq=700
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:650
Asic[ 1]:650 Asic[ 2]:650 Asic[ 3]:650 Asic[ 4]:650 Asic[ 5]:650 Asic[ 6]:650 Asic[ 7]:650 Asic[ 8]:650
Asic[ 9]:650 Asic[10]:650 Asic[11]:650 Asic[12]:650 Asic[13]:650 Asic[14]:650 Asic[15]:650 Asic[16]:650
Asic[17]:650 Asic[18]:650 Asic[19]:650 Asic[20]:650 Asic[21]:650 Asic[22]:650 Asic[23]:650 Asic[24]:650
Asic[25]:650 Asic[26]:656 Asic[27]:656 Asic[28]:656 Asic[29]:656 Asic[30]:656 Asic[31]:656 Asic[32]:656
Asic[33]:656 Asic[34]:656 Asic[35]:656 Asic[36]:656 Asic[37]:656 Asic[38]:656 Asic[39]:656 Asic[40]:656
Asic[41]:656 Asic[42]:656 Asic[43]:656 Asic[44]:656 Asic[45]:656 Asic[46]:656 Asic[47]:656 Asic[48]:656
Asic[49]:656 Asic[50]:656 Asic[51]:656 Asic[52]:656 Asic[53]:656 Asic[54]:656 Asic[55]:656 Asic[56]:656
Asic[57]:656 Asic[58]:656 Asic[59]:656 Asic[60]:656 Asic[61]:656 Asic[62]:656
Chain:6 max freq=656
Chain:6 min freq=650
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:656
Asic[ 1]:656 Asic[ 2]:656 Asic[ 3]:656 Asic[ 4]:656 Asic[ 5]:656 Asic[ 6]:656 Asic[ 7]:656 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:656 Asic[11]:656 Asic[12]:656 Asic[13]:637 Asic[14]:656 Asic[15]:662 Asic[16]:662
Asic[17]:662 Asic[18]:662 Asic[19]:637 Asic[20]:662 Asic[21]:662 Asic[22]:662 Asic[23]:662 Asic[24]:662
Asic[25]:662 Asic[26]:662 Asic[27]:662 Asic[28]:662 Asic[29]:662 Asic[30]:637 Asic[31]:662 Asic[32]:662
Asic[33]:662 Asic[34]:662 Asic[35]:662 Asic[36]:662 Asic[37]:662 Asic[38]:662 Asic[39]:662 Asic[40]:662
Asic[41]:662 Asic[42]:650 Asic[43]:662 Asic[44]:662 Asic[45]:662 Asic[46]:662 Asic[47]:662 Asic[48]:662
Asic[49]:662 Asic[50]:662 Asic[51]:662 Asic[52]:662 Asic[53]:662 Asic[54]:662 Asic[55]:650 Asic[56]:662
Asic[57]:650 Asic[58]:662 Asic[59]:662 Asic[60]:662 Asic[61]:662 Asic[62]:662
Chain:7 max freq=662
Chain:7 min freq=637
Miner fix freq ...
read PIC voltage=940 on chain[5]
Chain:5 chipnum=63
Chain[J6] voltage added=0.2V
Chain:5 temp offset=0
Chain:5 base freq=487
Asic[ 0]:618
Asic[ 1]:631 Asic[ 2]:650 Asic[ 3]:618 Asic[ 4]:631 Asic[ 5]:656 Asic[ 6]:618 Asic[ 7]:631 Asic[ 8]:656
Asic[ 9]:618 Asic[10]:631 Asic[11]:656 Asic[12]:631 Asic[13]:637 Asic[14]:606 Asic[15]:487 Asic[16]:637
Asic[17]:656 Asic[18]:618 Asic[19]:637 Asic[20]:656 Asic[21]:631 Asic[22]:650 Asic[23]:656 Asic[24]:631
Asic[25]:537 Asic[26]:656 Asic[27]:631 Asic[28]:587 Asic[29]:656 Asic[30]:612 Asic[31]:650 Asic[32]:656
Asic[33]:631 Asic[34]:650 Asic[35]:656 Asic[36]:631 Asic[37]:656 Asic[38]:656 Asic[39]:631 Asic[40]:656
Asic[41]:656 Asic[42]:543 Asic[43]:656 Asic[44]:656 Asic[45]:568 Asic[46]:656 Asic[47]:656 Asic[48]:631
Asic[49]:568 Asic[50]:656 Asic[51]:631 Asic[52]:625 Asic[53]:656 Asic[54]:631 Asic[55]:656 Asic[56]:656
Asic[57]:631 Asic[58]:656 Asic[59]:656 Asic[60]:631 Asic[61]:656 Asic[62]:656
Chain:5 max freq=656
Chain:5 min freq=487
read PIC voltage=940 on chain[6]
Chain:6 chipnum=63
Chain[J7] voltage added=0.1V
Chain:6 temp offset=0
Chain:6 base freq=687
Asic[ 0]:631
Asic[ 1]:631 Asic[ 2]:631 Asic[ 3]:631 Asic[ 4]:631 Asic[ 5]:631 Asic[ 6]:631 Asic[ 7]:631 Asic[ 8]:631
Asic[ 9]:631 Asic[10]:631 Asic[11]:631 Asic[12]:631 Asic[13]:631 Asic[14]:631 Asic[15]:631 Asic[16]:631
Asic[17]:631 Asic[18]:631 Asic[19]:631 Asic[20]:631 Asic[21]:631 Asic[22]:631 Asic[23]:631 Asic[24]:631
Asic[25]:631 Asic[26]:631 Asic[27]:631 Asic[28]:631 Asic[29]:631 Asic[30]:631 Asic[31]:631 Asic[32]:631
Asic[33]:631 Asic[34]:631 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:637 Asic[50]:637 Asic[51]:637 Asic[52]:637 Asic[53]:637 Asic[54]:637 Asic[55]:637 Asic[56]:637
Asic[57]:637 Asic[58]:637 Asic[59]:637 Asic[60]:637 Asic[61]:637 Asic[62]:637
Chain:6 max freq=637
Chain:6 min freq=631
read PIC voltage=940 on chain[7]
Chain:7 chipnum=63
Chain[J8] voltage added=0.2V
Chain:7 temp offset=0
Chain:7 base freq=637
Asic[ 0]:637
Asic[ 1]:637 Asic[ 2]:637 Asic[ 3]:637 Asic[ 4]:637 Asic[ 5]:637 Asic[ 6]:637 Asic[ 7]:637 Asic[ 8]:637
Asic[ 9]:637 Asic[10]:637 Asic[11]:637 Asic[12]:637 Asic[13]:637 Asic[14]:637 Asic[15]:637 Asic[16]:637
Asic[17]:637 Asic[18]:637 Asic[19]:637 Asic[20]:637 Asic[21]:637 Asic[22]:637 Asic[23]:637 Asic[24]:637
Asic[25]:637 Asic[26]:637 Asic[27]:637 Asic[28]:637 Asic[29]:637 Asic[30]:637 Asic[31]:637 Asic[32]:637
Asic[33]:637 Asic[34]:637 Asic[35]:637 Asic[36]:637 Asic[37]:637 Asic[38]:637 Asic[39]:637 Asic[40]:637
Asic[41]:637 Asic[42]:637 Asic[43]:637 Asic[44]:637 Asic[45]:637 Asic[46]:637 Asic[47]:637 Asic[48]:637
Asic[49]:643 Asic[50]:643 Asic[51]:643 Asic[52]:643 Asic[53]:643 Asic[54]:643 Asic[55]:643 Asic[56]:643
Asic[57]:643 Asic[58]:643 Asic[59]:643 Asic[60]:643 Asic[61]:643 Asic[62]:643
Chain:7 max freq=643
Chain:7 min freq=637
max freq = 656
set baud=1
Chain[J6] PIC temp offset=62,0,0,0,0,0,35,28
chain[5] temp chip I2C addr=0x98
chain[5] has no middle temp, use special fix mode.
Chain[J6] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[5] chip[244] local:26 remote:27 offset:29
Chain[J6] chip[244] get middle temp offset=29 typeID=55
Chain[J7] PIC temp offset=62,0,0,0,0,0,35,28
chain[6] temp chip I2C addr=0x98
chain[6] has no middle temp, use special fix mode.
Chain[J7] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[6] chip[244] local:26 remote:27 offset:29
Chain[J7] chip[244] get middle temp offset=29 typeID=55
Chain[J8] PIC temp offset=62,0,0,0,0,0,35,28
chain[7] temp chip I2C addr=0x98
chain[7] has no middle temp, use special fix mode.
Chain[J8] chip[244] use PIC middle temp offset=0 typeID=55
New offset Chain[7] chip[244] local:26 remote:28 offset:28
Chain[J8] chip[244] get middle temp offset=28 typeID=55
miner rate=13501 voltage limit=900 on chain[5]
get PIC voltage=880 on chain[5], check: must be < 900
miner rate=13501 voltage limit=900 on chain[6]
get PIC voltage=900 on chain[6], check: must be < 900
miner rate=13501 voltage limit=900 on chain[7]
get PIC voltage=880 on chain[7], check: must be < 900
Chain[J6] set working voltage=880 [108]
Chain[J7] set working voltage=900 [74]
Chain[J8] set working voltage=880 [108]
do heat board 8xPatten for 1 times
start send works on chain[5]
start send works on chain[6]
start send works on chain[7]
get send work num :57456 on Chain[5]
get send work num :57456 on Chain[6]
get send work num :57456 on Chain[7]
wait recv nonce on chain[5]
wait recv nonce on chain[6]
wait recv nonce on chain[7]
get nonces on chain[5]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=618 freq[01]=631 freq[02]=650 freq[03]=618 freq[04]=631 freq[05]=656 freq[06]=618 freq[07]=631
freq[08]=656 freq[09]=618 freq[10]=631 freq[11]=656 freq[12]=631 freq[13]=637 freq[14]=606 freq[15]=487
freq[16]=637 freq[17]=656 freq[18]=618 freq[19]=637 freq[20]=656 freq[21]=631 freq[22]=650 freq[23]=656
freq[24]=631 freq[25]=537 freq[26]=656 freq[27]=631 freq[28]=587 freq[29]=656 freq[30]=612 freq[31]=650
freq[32]=656 freq[33]=631 freq[34]=650 freq[35]=656 freq[36]=631 freq[37]=656 freq[38]=656 freq[39]=631
freq[40]=656 freq[41]=656 freq[42]=543 freq[43]=656 freq[44]=656 freq[45]=568 freq[46]=656 freq[47]=656
freq[48]=631 freq[49]=568 freq[50]=656 freq[51]=631 freq[52]=625 freq[53]=656 freq[54]=631 freq[55]=656
freq[56]=656 freq[57]=631 freq[58]=656 freq[59]=656 freq[60]=631 freq[61]=656 freq[62]=656
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25912
last_nonce_num:14370
get nonces on chain[6]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=912 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=912 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=912
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
freq[00]=631 freq[01]=631 freq[02]=631 freq[03]=631 freq[04]=631 freq[05]=631 freq[06]=631 freq[07]=631
freq[08]=631 freq[09]=631 freq[10]=631 freq[11]=631 freq[12]=631 freq[13]=631 freq[14]=631 freq[15]=631
freq[16]=631 freq[17]=631 freq[18]=631 freq[19]=631 freq[20]=631 freq[21]=631 freq[22]=631 freq[23]=631
freq[24]=631 freq[25]=631 freq[26]=631 freq[27]=631 freq[28]=631 freq[29]=631 freq[30]=631 freq[31]=631
freq[32]=631 freq[33]=631 freq[34]=631 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=637 freq[50]=637 freq[51]=637 freq[52]=637 freq[53]=637 freq[54]=637 freq[55]=637
freq[56]=637 freq[57]=637 freq[58]=637 freq[59]=637 freq[60]=637 freq[61]=637 freq[62]=637
total valid nonce number:57456
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:25987
last_nonce_num:14368
get nonces on chain[7]
require nonce number:912
require validnonce number:57456
asic[00]=912 asic[01]=912 asic[02]=912 asic[03]=912 asic[04]=912 asic[05]=912 asic[06]=912 asic[07]=912
asic[08]=907 asic[09]=912 asic[10]=912 asic[11]=912 asic[12]=912 asic[13]=912 asic[14]=912 asic[15]=912
asic[16]=912 asic[17]=912 asic[18]=912 asic[19]=909 asic[20]=912 asic[21]=912 asic[22]=912 asic[23]=912
asic[24]=912 asic[25]=912 asic[26]=912 asic[27]=912 asic[28]=912 asic[29]=912 asic[30]=912 asic[31]=912
asic[32]=912 asic[33]=912 asic[34]=912 asic[35]=912 asic[36]=912 asic[37]=912 asic[38]=912 asic[39]=912
asic[40]=912 asic[41]=912 asic[42]=912 asic[43]=912 asic[44]=912 asic[45]=912 asic[46]=912 asic[47]=912
asic[48]=912 asic[49]=912 asic[50]=912 asic[51]=912 asic[52]=912 asic[53]=912 asic[54]=912 asic[55]=911
asic[56]=912 asic[57]=912 asic[58]=912 asic[59]=912 asic[60]=912 asic[61]=912 asic[62]=912
Below ASIC's core didn't receive all the nonce, they should receive 8 nonce each!
asic[08]=907
core[049]=7 core[053]=5 core[056]=7
asic[19]=909
core[064]=7 core[112]=6
asic[55]=911
core[007]=7
freq[00]=637 freq[01]=637 freq[02]=637 freq[03]=637 freq[04]=637 freq[05]=637 freq[06]=637 freq[07]=637
freq[08]=637 freq[09]=637 freq[10]=637 freq[11]=637 freq[12]=637 freq[13]=637 freq[14]=637 freq[15]=637
freq[16]=637 freq[17]=637 freq[18]=637 freq[19]=637 freq[20]=637 freq[21]=637 freq[22]=637 freq[23]=637
freq[24]=637 freq[25]=637 freq[26]=637 freq[27]=637 freq[28]=637 freq[29]=637 freq[30]=637 freq[31]=637
freq[32]=637 freq[33]=637 freq[34]=637 freq[35]=637 freq[36]=637 freq[37]=637 freq[38]=637 freq[39]=637
freq[40]=637 freq[41]=637 freq[42]=637 freq[43]=637 freq[44]=637 freq[45]=637 freq[46]=637 freq[47]=637
freq[48]=637 freq[49]=643 freq[50]=643 freq[51]=643 freq[52]=643 freq[53]=643 freq[54]=643 freq[55]=643
freq[56]=643 freq[57]=643 freq[58]=643 freq[59]=643 freq[60]=643 freq[61]=643 freq[62]=643
total valid nonce number:57447
total send work number:57456
require valid nonce number:57456
repeated_nonce_num:0
err_nonce_num:26183
last_nonce_num:35748
chain[5]: All chip cores are opened OK!
Test Patten on chain[5]: OK!
chain[6]: All chip cores are opened OK!
Test Patten on chain[6]: OK!
chain[7]: All chip cores are opened OK!
Test Patten on chain[7]: OK!
setStartTimePoint total_tv_start_sys=217 total_tv_end_sys=218
restartNum = 2 , auto-reinit enabled...
do read_temp_func once...
do check_asic_reg 0x08
get RT hashrate from Chain[5]: (asic index start from 1-63)
Asic[01]=72.5110 Asic[02]=68.6020 Asic[03]=74.4230 Asic[04]=74.6750 Asic[05]=71.4540 Asic[06]=77.5610 Asic[07]=74.7760 Asic[08]=74.3900
Asic[09]=77.7790 Asic[10]=76.7220 Asic[11]=73.8020 Asic[12]=68.5850 Asic[13]=76.1680 Asic[14]=72.4770 Asic[15]=73.0470 Asic[16]=57.8810
Asic[17]=74.4740 Asic[18]=76.4530 Asic[19]=67.8800 Asic[20]=70.1280 Asic[21]=73.7520 Asic[22]=74.6580 Asic[23]=73.6850 Asic[24]=78.5170
Asic[25]=73.6850 Asic[26]=63.6860 Asic[27]=80.9660 Asic[28]=73.9200 Asic[29]=68.9870 Asic[30]=75.6310 Asic[31]=74.9770 Asic[32]=69.4570
Asic[33]=74.6580 Asic[34]=79.8930 Asic[35]=76.6710 Asic[36]=74.3730 Asic[37]=66.6050 Asic[38]=76.7380 Asic[39]=71.4540 Asic[40]=69.3060
Asic[41]=72.5610 Asic[42]=73.8530 Asic[43]=58.9210 Asic[44]=75.3800 Asic[45]=73.1310 Asic[46]=68.4000 Asic[47]=77.6780 Asic[48]=73.1150
Asic[49]=69.2890 Asic[50]=62.8130 Asic[51]=74.2720 Asic[52]=73.1480 Asic[53]=67.4440 Asic[54]=72.4940 Asic[55]=68.1990 Asic[56]=72.4100
Asic[57]=75.3460 Asic[58]=66.1350 Asic[59]=72.9800 Asic[60]=78.1480 Asic[61]=72.3260 Asic[62]=72.5610 Asic[63]=77.7950
get RT hashrate from Chain[6]: (asic index start from 1-63)
Asic[01]=67.6620 Asic[02]=75.9840 Asic[03]=70.3300 Asic[04]=75.5640 Asic[05]=62.8470 Asic[06]=70.2790 Asic[07]=74.5240 Asic[08]=72.9130
Asic[09]=70.6320 Asic[10]=72.5610 Asic[11]=73.9370 Asic[12]=77.3420 Asic[13]=72.4440 Asic[14]=68.8030 Asic[15]=73.0810 Asic[16]=73.8360
Asic[17]=73.5510 Asic[18]=73.9700 Asic[19]=71.0340 Asic[20]=71.1680 Asic[21]=72.1580 Asic[22]=78.8190 Asic[23]=71.9230 Asic[24]=69.4570
Asic[25]=67.7630 Asic[26]=71.7220 Asic[27]=76.4030 Asic[28]=71.1180 Asic[29]=68.7360 Asic[30]=69.7090 Asic[31]=77.5610 Asic[32]=70.1790
Asic[33]=67.9140 Asic[34]=72.3930 Asic[35]=64.5920 Asic[36]=72.1920 Asic[37]=74.6080 Asic[38]=75.4470 Asic[39]=73.8700 Asic[40]=73.9370
Asic[41]=66.2860 Asic[42]=79.4230 Asic[43]=75.8160 Asic[44]=68.6350 Asic[45]=74.7920 Asic[46]=70.7990 Asic[47]=71.2360 Asic[48]=73.8700
Asic[49]=66.5380 Asic[50]=70.6150 Asic[51]=72.6280 Asic[52]=75.7490 Asic[53]=71.8400 Asic[54]=76.5370 Asic[55]=73.5340 Asic[56]=69.2390
Asic[57]=75.1280 Asic[58]=74.3230 Asic[59]=73.4330 Asic[60]=72.3430 Asic[61]=77.6780 Asic[62]=82.4600 Asic[63]=69.5240
get RT hashrate from Chain[7]: (asic index start from 1-63)
Asic[01]=73.5510 Asic[02]=75.9160 Asic[03]=80.1110 Asic[04]=76.9900 Asic[05]=76.1510 Asic[06]=73.5170 Asic[07]=74.9940 Asic[08]=73.1150
Asic[09]=70.6650 Asic[10]=70.6990 Asic[11]=72.4770 Asic[12]=70.1450 Asic[13]=74.3060 Asic[14]=71.8060 Asic[15]=74.7420 Asic[16]=75.6650
Asic[17]=76.8220 Asic[18]=69.5240 Asic[19]=72.0910 Asic[20]=75.2620 Asic[21]=72.0240 Asic[22]=73.2660 Asic[23]=76.2690 Asic[24]=69.9440
Asic[25]=67.7290 Asic[26]=71.7050 Asic[27]=74.6250 Asic[28]=78.2320 Asic[29]=69.8430 Asic[30]=68.4670 Asic[31]=71.5210 Asic[32]=68.9540
Asic[33]=74.6250 Asic[34]=71.8730 Asic[35]=74.4400 Asic[36]=74.8760 Asic[37]=73.9030 Asic[38]=72.9300 Asic[39]=69.6250 Asic[40]=74.9430
Asic[41]=72.7620 Asic[42]=69.4910 Asic[43]=67.4270 Asic[44]=71.4870 Asic[45]=74.4570 Asic[46]=66.6550 Asic[47]=67.5450 Asic[48]=75.4800
Asic[49]=72.2590 Asic[50]=72.9300 Asic[51]=75.6820 Asic[52]=71.9070 Asic[53]=67.9640 Asic[54]=67.8470 Asic[55]=74.3900 Asic[56]=71.0010
Asic[57]=75.8490 Asic[58]=74.9270 Asic[59]=72.3930 Asic[60]=74.3730 Asic[61]=75.5310 Asic[62]=73.8190 Asic[63]=72.4440
Check Chain[J6] ASIC RT error: (asic index start from 1-63)
Check Chain[J7] ASIC RT error: (asic index start from 1-63)
Check Chain[J8] ASIC RT error: (asic index start from 1-63)
Done check_asic_reg
do read temp on Chain[5]
Chain[5] Chip[62] TempTypeID=55 middle offset=29
Chain[5] Chip[62] local Temp=60
Chain[5] Chip[62] middle Temp=70
Special fix Chain[5] Chip[62] middle Temp = 75
Done read temp on Chain[5]
do read temp on Chain[6]
Chain[6] Chip[62] TempTypeID=55 middle offset=29
Chain[6] Chip[62] local Temp=60
Chain[6] Chip[62] middle Temp=72
Special fix Chain[6] Chip[62] middle Temp = 75
Done read temp on Chain[6]
do read temp on Chain[7]
Chain[7] Chip[62] TempTypeID=55 middle offset=28
Chain[7] Chip[62] local Temp=62
Chain[7] Chip[62] middle Temp=72
Special fix Chain[7] Chip[62] middle Temp = 77
Done read temp on Chain[7]
set FAN speed according to: temp_highest=62 temp_top1[PWM_T]=62 temp_top1[TEMP_POS_LOCAL]=62 temp_change=0 fix_fan_steps=0
FAN PWM: 74
read_temp_func Done!
CRC error counter=0
submitted by Timsierramist to BITMAIN [link] [comments]

SegWit Transaction Percentage Hits 6%

Update, we hit another milestone today. Segwit hits 6% - Source: http://segwit.party/charts/
SegWit is the process by which the block size limit on the blockchain is increased by removing signature data from Bitcoin transactions. This frees up space or capacity to add more transactions to the chain.
It solves a blockchain size limitation problem that reduces Bitcoin transaction speed by allowing more transactions to fit in each block. The overall effect would be changing the average block size to about 1.8 MB instead of 1, after everyone upgrades to SegWit.
Bitcoin price is approaching the all time high. Mem Pool is empty & number of unconfirmed transactions are at an all time low, since I started checking at the start of this year. They used to be over 150,000, but currently they are sitting at under 10,000. Source: https://blockchain.info/unconfirmed-transactions.
When doing a SegWit transaction, you can send Bitcoin for 5 cents = $0.05. If you want to take advantage of SegWit, use a free wallet like GreenAddress: https://greenaddress.it/en/ OR a Hardware wallet like Trezor or Ledger. Hardware wallets are safer than desktop wallets.
If this is how well Bitcoin performs with JUST SegWit, imagine how well Bitcoin will perform when the block size doubles in November with the Segwit2X Hard Fork, which would effectively increase block size to 3.6MB! Why would anyone use an Alt coin then?
If you want to get 1 Free Bitcoin (Bitcoin Gold) at the end of October, & another free Bitcoin in November (Bitcoin Legacy), for each Bitcoin you own, make sure you hold your Bitcoins (BTC) in a hardware wallet like Trezor or Ledger.
submitted by BTCBCCBCH to btc [link] [comments]

SegWit Transaction Percentage Hits 6.5%

Yesterday, I reported that " we hit another milestone today. SegWit hits 6%"
Today it just hit 6.5%. Source: http://segwit.party/charts/
It looks like the pace to SegWit adoption is picking up speed, very quickly, & Bitcoin price is rising close to all time highs again, as transactions fees are falling rapidly, & confirmations times are much quicker..
Segregated Witness, or SegWit, is a solution to improve the Bitcoin's scalability and make it cheaper AND faster to process more transactions.
Here are the key things that SegWit enables:
• It rearranges how data is stored in Bitcoin blocks.
• It boosts capacity while remaining compatible with past versions of the software.
• It removes transaction malleability, a bug that's been the primary roadblock for many bitcoin projects.
Source: https://www.coindesk.com/50-blocks-segwit-bitcoins-coming-upgrade-blockchain-game-change
Bitcoin Mem Pool is at an all time low this year, sitting at or around 10,000. It used to sit at 150,000 PLUS, before SegWIt.- Source: https://blockchain.info/unconfirmed-transactions
If this is how well Bitcoin performs with JUST SegWit, imagine how well Bitcoin will perform when / if the block size doubles in November with the Segwit2X Hard Fork! Could this be the driving force behind the the increase in BTC Dominance to 48.8%?
If you want to get 1 Free Bitcoin (Bitcoin Gold) at the end of October, & another free Bitcoin in November (Bitcoin Segwit2X), for each Bitcoin BTC you own, make sure you hold your Bitcoins (BTC) in a hardware wallet like Trezor or Ledger.
This post is an educated guess, based on what I have read, in many forums. I am not a technical expert. This is not financial advice. I am not your advisor. Please carry out your own research.
submitted by BTCBCCBCH to btc [link] [comments]

StressTest stats you can run in BU

If you are running a BU node, there's a little known feature that lets you dump a lot of stats. History is kept at larger and larger granularities the farther back you need to go. So even though the stresstest is over, you can still look at the data!

I can see the effect of the stress test on the mempool on my 1.5.0.1 node like this:
$ ./bitcoin-cli getstat memPool/txAdded hourly 10 [ { "hourly": [ 1630, 771, 639, 230292, 236229, 296678, 377, 473, 5202, 5532 ] } ] 
So my node saw about 750k transactions relayed to it during the stress test. Note that there may have been more total confirmed transactions -- they might have been put into a block without being relayed, or relayed to me.

And here is the mempool size (sum of the serialized size in bytes of all transactions in the mempool -- this is a little different than what other people may call the mempool size, since there is overhead):
$ ./bitcoin-cli getstat memPool/size hourly 10 [ { "hourly": [ { "min": 790, "val": 136989, "max": 347506 }, { "min": 450, "val": 39224, "max": 96416 }, { "min": 1559, "val": 30874, "max": 77199 }, { "min": 2199, "val": 12617302, "max": 37434112 }, { "min": 301467, "val": 6336859, "max": 15664330 }, { "min": 4220698, "val": 26062674, "max": 57518902 }, { "min": 91261, "val": 2574388, "max": 25566863 }, { "min": 745, "val": 40919, "max": 128812 }, { "min": 225, "val": 300854, "max": 1104338 }, { "min": 595, "val": 81382, "max": 476905 } ] } ] 
So clearly plenty of opportunity within that hour where the max mempool size was 57MB to generate a 32MB block!

Use "./bitcoin-cli help getstat" to understand this command better, and "./bitcoin-cli getstatlist" to dump all available stats. There are a lot of possible stats, although some of them are experimental.


submitted by gandrewstone to bitcoin_unlimited [link] [comments]

Bitcoin dev IRC meeting in layman's terms (or an attempt to)

As you may or may not know, since scaling bitcoin in Montreal there's a weekly dev meeting on IRC. While very interesting to read, as a non-technical person such as myself it really takes some time to understand what they're all talking about, but I do like to know what they are working on.
Since I'm doing the work to find out anyway, I might as well share it with the community.
Please bare in mind I'm not a developer and I'd have problems coding "hello world!", so some things might be incorrect or plain wrong. Like any other write-up it likely contains personal biases, although I try to stay as neutral as I can.
The full IRC-logs can be found here.
There are no decisions being made in these meetings, so if I say "everyone agrees" this means everyone present in the meeting, that's not consensus, but since a fair amount of devs are present it's a good representation.
Main topics discussed where: Mempool limiting BIP68 + CHECKSEQUENCEVERIFY CLTV soft fork deployment libconsensus merge time window
Mempool limiting
When a transaction is relayed across the network it is held by the nodes in memory, until it gets into a block. All these transactions that sit in memory are called the memorypool or mempool for short. Like we could see during the spam-attack if there's a big back-log of transactions that couldn't make it in the blockchain this mempool can get pretty big resulting in nodes crashing.
To stop this from happening devs are trying to find a way to limit this mempool, so a mechanism to reject and/or remove transactions from the mempool. The hard part here is to make it so nodes can't be attacked by abusing this mechanism.
There are multiple worked out ideas for this, namely: Limit mempool by throwing away the cheapest txn and setting min realy fee to it Mempool limiting with descendant package tracking exponential rising effective min relay feerate
devs are leaning towards 6722 (throwing away the cheapest txn and setting min relay fee to it) because it's the more simpler approach and possibly less edge-cases. The idea behind it is to have a mem-pool that gives a good approximation on what'll be included in the next blocks, meaning higher fee transactions. This approach also helps to build a fee-estimator. Some devs propose to include a time-based eviction as well.
6722 should be completed and 6722, 6557 and 6673 should be attacked by the others to try and find edge-cases. The default mempool size should be 300Mb.
Chain limits
Related to mempool limiting. Chain in this context means connected transactions. When you send a transaction that depends on another transaction that has yet to be confirmed we talk about a chain of transactions. Miners ideally take the whole chain into account instead of just every single transaction (although that's not widely implemented afaik). So while a single transaction might not have a sufficient fee, a depending transaction could have a high enough fee to make it worthwhile to mine both. This is commonly known as child-pays-for-parent. Since you can make these chains very big it's possible to clog up the mempool this way. The first unconfirmed transaction is called the ancestor and the transactions depending on it the descendants. The total amount of transactions is referred to as "packages".
All of the mempool limiting approaches are way easier to attack if you have bigger chain limits. the reason to have larger descendant packages is you can't control that yourself, somebody pays you and bob, and bob chains off a million descendants and he ends up screwing you. if you have a say 900kb ancestor package limit, then even if the ancestor fee rate is reasonably high, default mining code is likely going to find 100kb of very high fee txs to include first, and then there won't be room for your ancestor package. Morcos proposes 25/250kb for ancestors and 50/500kb for descendants, meaning max. either 25 transactions or 250kb in size for ancestors. Most seem to be fine with those limits and even smaller.
-meeting conclusion
morcos writes a chain-limit proposal to post on the mailing list in order to find possible usecases for large chain transactions.
CHECKLOCKTIMEVERIFY softfork
Commonly referred to as: How you thought nLockTime worked before you actually tried to use it. There's a fair amount of demand for this and the code is reviewed and has been running on sidechains alpha for 6 months. The only real issue is how and when it's merged. Currently softforks have been done by the isSuperMajority mechanism, meaning when 95% of the last X blocks has a version number higher than X the fork is deployed. A new way of doing this is currently being worked on and that uses all bits of the version number, appropriately being called versionbits. So instead of a fork happening when the version is larger than (for example) 00000000011 (3), a fork happens when (for example) the 3rd bit is up (so 00100000011). This way softforks can be deployed simultaneous and independent of each other.
Questions are being posed whether we wait for other time-related BIP's and/or versionbits, or do it now using isSuperMajority. If versionbits is deployed later it needs to wait for all supermajority softforks to be over. Vladimir van der Laan doesn't want to deploy any soft forks in major releases (0.12 in this case) so that people explicitly upgrade for the softfork not for other things. You could roll out multiple supermajority forks as long as they are cumulative. Talks seem to converge to using supermajority to deploy checkLockTimeVerify and checkSequenceVerify if it's ready by the end of October.
checkLockTimeVerify backports (deployment in older versions) needs to be reviewed as well as BIP68, 112 and 113 (all the time-related BIP's).
Libconsensus
Satoshi wasn't the best programmer out there, which leaves a pretty messy code. Ideally you'd have the part of the code that influences the network consensus separately, but in bitcoin it's all intertwined. Libconsensus is what eventually should become this part. This way people can more easily make changes in the non-consensus part without fear of causing a network fork. This however is a slow and dangerous project of moving lot's of code around.
Lot's of discussion on when existing changes should be merged, when the code should be frozen for next release etc. In linux changes are merged right after a major release. jtimon notices this was planned for after 0.10 and 0.11 too, but nothing happened. There seems to be a lack of planning and overview as to what where has to go.
jtimon will provide a high level rationale for what and where things should move so people can make comments and review according to this rationale.
Participants
dstadulis Daniel Stadulis wumpus Wladimir J. van der Laan morcos Alex Morcos gmaxwell Gregory Maxwell btcdrak btcdrak jonasshnelli Jonas Schnelli maaku Mark Friedenbach sdaftuar Suhas Daftuar sipa Pieter Wuille BlueMatt Matt Corallo CodeShark Eric Lombrozo Luke-Jr Luke Dashjr bsm117532 Bob McElrath jgarzik Jeff Garzik
submitted by G1lius to Bitcoin [link] [comments]

Bitcoin Mem Pool Empty with Segwit, If Bitcoin Segwit2X WINS, MANY Alt Coins will DIE! Roll on November....

I invested in Bitcoin at the start of this year. Ever since I joined, whenever I checked the number of unconfirmed transactions, the figure was around / over 150,000.
Now, whenever I check, it is around, or even BELOW 10,000. Source: https://blockchain.info/unconfirmed-transactions
The Mem Pool is empty, and this is with only a small adoption of Segwit so far. I am able to send Bitcoin, from a Segwit Address, & get fast confirmations, for only 5 cents = $0.05. Segwit clearly has had a MAJOR impact, with such a small & slow adoption rate.
Now, if we get Segwit2X, with DOUBLE the block size, PLUS Segwit, and this becomes known as THE Bitcoin, the block size will have a much BIGGER, FASTER and IMMEDIATE impact than Segwit alone. Transaction fees will be so LOW, they will be NEGLIGIBLE, & we will have SUPER FAST confirmation times.
With the NEW, BIGGER BLOCKS, Bitcoin, the majority of ALT COINS are no longer needed, & will collapse, in my view. November, 2017, might forever be remembered as the month in which the majority of ALT COINS COLLAPSED, and BITCOIN WENT TO THE MOON!
If Segwit2X loses the battle, then we will get a FREE Dividend Bitcoin2X!
This is not financial advice, I am not your financial advisor, please carry out your own research. I am guessing as to what will happen.
Whatever happens in November, this is a WIN / WIN Situation, for everyone who holds Bitcoin.
submitted by BTCBCCBCH to btc [link] [comments]

Bitcoin dev IRC meeting in layman's terms (2015-10-22)

Once again my attempt to summarize and explain the weekly bitcoin developer meeting in layman's terms. Link to last weeks summarization
Disclaimer
Please bear in mind I'm not a developer and I'd have problems coding "hello world!", so some things might be incorrect or plain wrong. Like any other write-up it likely contains personal biases, although I try to stay as neutral as I can. There are no decisions being made in these meetings, so if I say "everyone agrees" this means everyone present in the meeting, that's not consensus, but since a fair amount of devs are present it's a good representation. The dev IRC and mailinglist are for bitcoin development purposes. If you have not contributed actual code to a bitcoin-implementation, this is probably not the place you want to reach out to. There are many places to discuss things that the developers read, including this sub-reddit.
link to this week logs Meeting minutes by meetbot
Main topics discussed where:
Mempool Memory Usage LevelDB replacement Median Past locktime & CLTV
Short topics/notes
BIP 9 Versionbits PR #6816 is ready for implementation and needs more reviews.
A 3 month moderation period on the bitcoin-dev mailinglist has started, as well as a new list bitcoin-discuss. more details: http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Octobe011591.html
"bitcoin.org had incorrect release notes for 0.11.1. It's corrected now. They had posted the release notes for the initial RC and not updated them. Process wise it would be good to watch out for that in the future."
Mempool Memory Usage
When a transaction is relayed across the network it is held by the nodes in memory, until it gets into a block. All these transactions that sit in memory are called the memorypool or mempool for short. Like we could see during the spam-attack if there's a big back-log of transactions that couldn't make it in the blockchain this mempool can get pretty big resulting in nodes crashing.
To stop this from happening devs created a mechanism to reject and/or remove transactions from the mempool. This mempool limiting got merged this week.
Also relevant: There is an already existing limit on the database cache size called "dbCache". The default value for that is 100MB.
Testing shows there's a discrepancy between the configured mempool limit and the actual memory usage. This is caused by the amount of UTXO data when processing transactions. This data is only flushed after a block is processed (so temporarily exceeding the cache limit set in dbCache).
There are 2 "obvious" solutions for this:
  1. Always enforce the UTXO cache limit, just like the mempool limit is always enforced. Downside for that is if you misconfigure your mempool limit an attack can blow away your UTXO cache, which significantly slows down validation and propagation.
  2. Take the UTXO cache into account when limiting the mempool. Downside for that is that you could construct transactions which require way more cache space and thereby more easily kick out other transactions.
A more optimal solution would be to give priority in the cache to things in the mempool. Ways to achieve that are to kick UTXO's from transaction that are evicted from the mempool out of the cache and from transactions that never made it into the mempool. Something TheBlueMatt is working on
Continue to research and optimize.
LevelDB replacement
LevelDB is the database system currently used in bitcoin. Since this is not being maintained for some time devs are looking for replacements.
jgarzik worked on a patch for SQLite Some people express concerns whether the performance will be good enough with SQLite, but there are no benchmark results yet.
Do research into other options Do lots of benchmarks and report results
Median Past locktime & CLTV
When a block is created miners include a timestamp. This timestamp has to be between the median of the previous 11 blocks and the network-adjusted time +2 hours. So this timestamp can vary a decent amount from the real time. With the introduction of lock-time transactions, that are only valid after a certain time, miners are incentivised to lie about the time in order to include time-locked transactions (and their fees) that wouldn't otherwise be valid. BIP 113 enables the usage of GetMedianTimePast (the median of the previous 11 blocks) from the prior block in lock-time transactions to combat this behaviour. Users can compensate for this by adding 1 hour (6 blocks) to their lock times.
CLTV stands for CheckLockTimeVerify, BIP65 Commonly reffered to as: How you thought nLockTime worked before you actually tried to use it.
CLTV is ready to be merged (and has been merged at time of writing) Questions of whether to add median past locktime as mempool only or as softfork Overall questions as to what to include in the CLTV deployment, what to include as mem-pool only and what as softfork. Median past locktime violates current 'standard' behavior, so we would prefer to have that violation dead in the network before the median past locktime softfork moves forward.
review BIP-113: Mempool-only median time-past as endpoint for lock-time calculations review the CLTV backports (done and merged at time of writing) Backport median past locktime to 0.10 and 0.11
Participants
btcdrak btcdrak sipa Pieter Wuille gmaxwell Gregory Maxwell BlueMatt Matt Corallo morcos Alex Morcos petertodd Peter Todd CodeShark Eric Lombrozo jgarzik Jeff Garzik maaku Mark Friedenbach kanzure Bryan Bishop jcorgan Johnathan Corgan Luke-Jr Luke Dashjr jonasschnelli Jonas Schnelli sdaftuar Suhas Daftuar
submitted by G1lius to Bitcoin [link] [comments]

Why Bitcoin Cash Won't Replace Bitcoin & How It'll End GTX 1080 Ethereum Classic And Sia Mining! Profitability And Coin Expectancy! Live Bitcoin Trading With DeriBot on Deribit Live Bitcoin Trading With DeriBot on Deribit Live Bitcoin Trading With DeriBot on Deribit

bitcoin-mempool.info is visualizing number, fees and size of uncomfirmed transactions (mempool) propagated on the Bitcoin (BTC) network. bitcoin-mempool.info – – Period: This page displays the number and size of the unconfirmed bitcoin transactions, also known as the transactions in the mempool. It gives a real-time view and shows how the When a Bitcoin transaction is transmitted to the network, it first gets verified by all of the Bitcoin nodes available (i.e. computers participating in the Bitcoin network).. After it successfully passes verification by a node, it sits inside that node’s “Unconfirmed Transactions” area called the “Mempool” (short for Memory Pool). As you can see in the above image, miners or mining pools (Bitcoin.com, BitFury, BitClub, etc.) get an additional reward on top of the standard 12.5 BTC block reward.. And that’s why it stands to reason that a miner will pick to mine the blocks in the mempool with higher transaction fees. The mempool is where all the valid transactions wait to be confirmed by the Bitcoin network. A high mempool size indicates more network traffic which will result in longer average confirmation time and higher priority fees. The mempool size is a good metric to estimate how long the congestion will last whereas the Mempool Transaction Count Current Bitcoin Mempool Where is my transaction in the mempool? The chart shows a mempool snapshot from my node. The mempool contains unconfirmed transactions waiting to be included in a block. Each transaction pays a fee and has a size.

[index] [19280] [28073] [19981] [28472] [2247] [30969] [18503] [17804] [6373] [14782]

Why Bitcoin Cash Won't Replace Bitcoin & How It'll End

⏱️ DeriBot.info - The Fastest Bitcoin Trading Robot for Deribit 🔍Try It Free https://deribot.info/?ref=tryfree 📊 We trade BTC and ETH on Deribit Exchange htt... What is the Mempool of Bitcoin? #Cryptovlog 37 - Duration: 4:17. AndiX 101 views. 4:17. Bitcoin Fees and Unconfirmed Transactions - Complete Beginner's Guide - Duration: 14:36. Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube. 24/7 Live Bitcoin Algo Trading on Deribit Exchange (DeriBot) Bitcoin Trading Robots 182 watching Live now Live Bitcoin Trading With DeriBot on Deribit - Duration: 3:04:00. ⏱️ DeriBot.info - The Fastest Bitcoin Trading Robot for Deribit 🔍Try It Free https://deribot.info/?ref=tryfree 📊 We trade BTC and ETH on Deribit Exchange htt...

Flag Counter